inorganic compounds
Zr3NiSb7: a new antimony-enriched ZrSb2 derivative
aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Street 6, 79005 Lviv, Ukraine, and bDepartment of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
*Correspondence e-mail: romakav@yahoo.com
Single crystals of trizirconium nickel heptaantimonide were synthesized from the constituent elements by arc-melting. The compound crystallizes in a unique structure type and belongs to the family of two-layer structures. All crystallographically unique atoms (3 × Zr, 1 × Ni and 7 × Sb) are located at sites with m symmetry. The structure contains `Zr2Ni2Sb5' and `Zr4Sb9' fragments and might be described as a new ZrSb2 derivative with a high Sb content.
Related literature
The structure of ZrSb2 was described by Garcia & Corbett (1988). For related antimonides, see: Romaka et al. (2007); Tkachuk et al. (2007). For related literature, see: Emsley (1991).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808020278/wm2182sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808020278/wm2182Isup2.hkl
A sample with nominal composition Zr30Ni10Sb60 was prepared by arc-melting the constituent elements Zr (99.99 wt.%), Ni (99.99 wt.%), and Sb (99.99 wt.%) on a water-cooled copper hearth under a protective Ti-gettered argon atmosphere. 5 wt.% excess of Sb was required to compensate the evaporative loss during arc-melting. The ingot was annealed at 870 K for 720 h in an evacuated silica ampoule, and finally quenched in cold water. A crystal of the title compound suitable for single-crystal X-ray diffraction was extracted directly from the annealed sample. The chemical composition of the crystal was determined on the basis of an energy dispersive X-ray spectroscopical analysis using a Hitachi S-2700 scanning electron microscope. The result of the analysis is in good aggreement with the composition calculated from the structural
Measured: 24.5 (8) %at Zr, 11.3 (6) %at Ni, 64.2 (16) %at Sb; calculated Zr 27 %at, Ni 9%at, Sb 64 %at.The highest remaining electron density peak and the deepest hole are located 0.80 Å from Sb1 and 1.78 Å from Ni1, respectively. The structure solution and
were also performed in the non-centrosymmetric Pna21, but were less satisfactory and resulted in larger R indices and atomic displacement parameters.Data collection: SMART (Bruker, 2000); cell
SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. (a). Projection of the Zr3NiSb7 structure onto the (010) plane with displacement ellipsoids drawn at the 95% probability level. [Symmetry codes: (i) 0.5 - x, 1 - y, -1/2 + z; (iv) 0.5 - x, -y, 0.5 - z; (vi) 1/2 + x, y, 1.5 - z]; (b) Projection of the ZrSb2 structure onto the (010) plane. | |
Fig. 2. The stacked "Zr2Ni2Sb5" and "Zr4Sb9" fragments in the Zr3NiSb7 structure. |
Zr3NiSb7 | F(000) = 2020 |
Mr = 1184.62 | Dx = 7.946 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 4956 reflections |
a = 17.5165 (19) Å | θ = 2.3–33.1° |
b = 3.9266 (4) Å | µ = 23.56 mm−1 |
c = 14.3968 (15) Å | T = 295 K |
V = 990.22 (18) Å3 | Needle, silver |
Z = 4 | 0.37 × 0.06 × 0.04 mm |
Bruker SMART 1000 diffractometer | 1722 independent reflections |
Radiation source: fine-focus sealed tube | 1500 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ϕ and ω scans | θmax = 30.5°, θmin = 2.3° |
Absorption correction: numerical (SHELXTL; Sheldrick, 2008) | h = −25→25 |
Tmin = 0.057, Tmax = 0.426 | k = −5→5 |
11118 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0223P)2 + 1.1518P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.054 | (Δ/σ)max = 0.001 |
S = 1.18 | Δρmax = 2.12 e Å−3 |
1722 reflections | Δρmin = −2.89 e Å−3 |
68 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00069 (5) |
Zr3NiSb7 | V = 990.22 (18) Å3 |
Mr = 1184.62 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 17.5165 (19) Å | µ = 23.56 mm−1 |
b = 3.9266 (4) Å | T = 295 K |
c = 14.3968 (15) Å | 0.37 × 0.06 × 0.04 mm |
Bruker SMART 1000 diffractometer | 1722 independent reflections |
Absorption correction: numerical (SHELXTL; Sheldrick, 2008) | 1500 reflections with I > 2σ(I) |
Tmin = 0.057, Tmax = 0.426 | Rint = 0.044 |
11118 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 68 parameters |
wR(F2) = 0.054 | 0 restraints |
S = 1.18 | Δρmax = 2.12 e Å−3 |
1722 reflections | Δρmin = −2.89 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zr1 | 0.34664 (4) | 0.2500 | 0.19076 (5) | 0.00788 (14) | |
Zr2 | 0.37045 (4) | 0.2500 | 0.47072 (5) | 0.00721 (13) | |
Zr3 | 0.39237 (4) | 0.2500 | 0.90990 (5) | 0.00782 (14) | |
Ni1 | 0.43680 (5) | 0.2500 | 0.68908 (6) | 0.00903 (18) | |
Sb1 | 0.02147 (3) | 0.2500 | 0.29766 (3) | 0.00871 (11) | |
Sb2 | 0.03748 (2) | 0.2500 | 0.07626 (3) | 0.00790 (10) | |
Sb3 | 0.07123 (3) | 0.2500 | 0.56057 (3) | 0.00957 (11) | |
Sb4 | 0.09131 (3) | 0.2500 | 0.82504 (3) | 0.00823 (10) | |
Sb5 | 0.22833 (3) | 0.2500 | 0.35390 (3) | 0.00918 (11) | |
Sb6 | 0.24792 (2) | 0.2500 | 0.02153 (3) | 0.00875 (11) | |
Sb7 | 0.28995 (3) | 0.2500 | 0.68532 (4) | 0.01218 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zr1 | 0.0068 (3) | 0.0083 (3) | 0.0085 (3) | 0.000 | −0.0007 (2) | 0.000 |
Zr2 | 0.0054 (3) | 0.0077 (3) | 0.0085 (3) | 0.000 | 0.0002 (2) | 0.000 |
Zr3 | 0.0064 (3) | 0.0078 (3) | 0.0092 (3) | 0.000 | 0.0004 (2) | 0.000 |
Ni1 | 0.0085 (4) | 0.0092 (5) | 0.0094 (4) | 0.000 | 0.0000 (3) | 0.000 |
Sb1 | 0.0081 (2) | 0.0089 (2) | 0.0092 (2) | 0.000 | −0.00158 (15) | 0.000 |
Sb2 | 0.0069 (2) | 0.0084 (2) | 0.0084 (2) | 0.000 | 0.00046 (15) | 0.000 |
Sb3 | 0.0104 (2) | 0.0100 (2) | 0.0083 (2) | 0.000 | 0.00042 (16) | 0.000 |
Sb4 | 0.0082 (2) | 0.0086 (2) | 0.0079 (2) | 0.000 | 0.00022 (15) | 0.000 |
Sb5 | 0.0069 (2) | 0.0104 (2) | 0.0102 (2) | 0.000 | 0.00005 (15) | 0.000 |
Sb6 | 0.0069 (2) | 0.0100 (2) | 0.0094 (2) | 0.000 | −0.00051 (15) | 0.000 |
Sb7 | 0.0076 (2) | 0.0100 (3) | 0.0189 (3) | 0.000 | 0.00142 (16) | 0.000 |
Zr1—Sb4i | 2.9620 (6) | Sb2—Ni1ii | 2.5876 (7) |
Zr1—Sb4ii | 2.9620 (6) | Sb2—Zr2ii | 2.9604 (6) |
Zr1—Sb6 | 2.9876 (8) | Sb2—Zr2i | 2.9604 (6) |
Zr1—Sb1iii | 3.0669 (8) | Sb2—Zr2viii | 3.0030 (8) |
Zr1—Sb3ii | 3.0720 (7) | Sb2—Sb2xi | 3.2250 (7) |
Zr1—Sb3i | 3.0720 (7) | Sb2—Sb2xii | 3.2250 (7) |
Zr1—Sb7ii | 3.0960 (6) | Sb2—Sb4x | 3.3111 (6) |
Zr1—Sb7i | 3.0960 (6) | Sb2—Sb4ix | 3.3111 (6) |
Zr1—Sb5 | 3.1324 (8) | Sb3—Zr3ii | 2.9943 (7) |
Zr2—Sb6iv | 2.9478 (6) | Sb3—Zr3i | 2.9943 (7) |
Zr2—Sb6v | 2.9478 (6) | Sb3—Zr1v | 3.0720 (7) |
Zr2—Sb4ii | 2.9499 (6) | Sb3—Zr1iv | 3.0720 (7) |
Zr2—Sb4i | 2.9499 (6) | Sb3—Zr3xiii | 3.1617 (9) |
Zr2—Sb2v | 2.9604 (6) | Sb3—Sb1ix | 3.2645 (6) |
Zr2—Sb2iv | 2.9604 (6) | Sb3—Sb1x | 3.2645 (6) |
Zr2—Sb2iii | 3.0029 (8) | Sb4—Ni1xiii | 2.7141 (10) |
Zr2—Sb5 | 3.0044 (8) | Sb4—Zr2v | 2.9499 (6) |
Zr2—Sb7 | 3.3962 (9) | Sb4—Zr2iv | 2.9499 (6) |
Zr3—Sb1iv | 2.9569 (6) | Sb4—Zr1iv | 2.9619 (6) |
Zr3—Sb1v | 2.9569 (6) | Sb4—Zr1v | 2.9619 (6) |
Zr3—Sb3v | 2.9944 (7) | Sb4—Sb1x | 3.2981 (6) |
Zr3—Sb3iv | 2.9944 (7) | Sb4—Sb1ix | 3.2981 (6) |
Zr3—Sb5iv | 2.9958 (6) | Sb4—Sb2x | 3.3111 (6) |
Zr3—Sb5v | 2.9958 (6) | Sb4—Sb2ix | 3.3110 (6) |
Zr3—Sb6vi | 2.9975 (8) | Sb5—Zr3ii | 2.9958 (6) |
Zr3—Sb3vii | 3.1616 (9) | Sb5—Zr3i | 2.9958 (6) |
Zr3—Ni1 | 3.2730 (12) | Sb5—Sb7ii | 3.1380 (6) |
Ni1—Sb7 | 2.5728 (10) | Sb5—Sb7i | 3.1380 (6) |
Ni1—Sb2iv | 2.5875 (7) | Sb5—Sb6v | 3.1387 (6) |
Ni1—Sb2v | 2.5875 (7) | Sb5—Sb6iv | 3.1387 (6) |
Ni1—Sb1v | 2.6140 (7) | Sb6—Zr2ii | 2.9478 (6) |
Ni1—Sb1iv | 2.6140 (7) | Sb6—Zr2i | 2.9478 (6) |
Ni1—Sb4vii | 2.7141 (10) | Sb6—Zr3xiv | 2.9974 (8) |
Sb1—Ni1ii | 2.6139 (7) | Sb6—Sb5ii | 3.1388 (6) |
Sb1—Ni1i | 2.6139 (7) | Sb6—Sb5i | 3.1388 (6) |
Sb1—Zr3i | 2.9570 (6) | Sb6—Sb7i | 3.1393 (6) |
Sb1—Zr3ii | 2.9570 (6) | Sb6—Sb7ii | 3.1393 (6) |
Sb1—Zr1viii | 3.0669 (8) | Sb7—Zr1iv | 3.0960 (6) |
Sb1—Sb2 | 3.1998 (8) | Sb7—Zr1v | 3.0960 (6) |
Sb1—Sb3ix | 3.2645 (6) | Sb7—Sb5v | 3.1380 (6) |
Sb1—Sb3x | 3.2645 (6) | Sb7—Sb5iv | 3.1380 (6) |
Sb1—Sb4x | 3.2981 (6) | Sb7—Sb6iv | 3.1393 (6) |
Sb1—Sb4ix | 3.2981 (6) | Sb7—Sb6v | 3.1393 (6) |
Sb2—Ni1i | 2.5876 (7) | ||
Sb4i—Zr1—Sb4ii | 83.03 (2) | Ni1i—Sb2—Zr2viii | 108.12 (2) |
Sb4i—Zr1—Sb6 | 138.128 (11) | Ni1ii—Sb2—Zr2viii | 108.12 (2) |
Sb4ii—Zr1—Sb6 | 138.128 (11) | Zr2ii—Sb2—Zr2viii | 114.528 (17) |
Sb4i—Zr1—Sb1iii | 66.303 (16) | Zr2i—Sb2—Zr2viii | 114.528 (17) |
Sb4ii—Zr1—Sb1iii | 66.303 (16) | Ni1i—Sb2—Sb1 | 52.409 (19) |
Sb6—Zr1—Sb1iii | 128.48 (3) | Ni1ii—Sb2—Sb1 | 52.409 (19) |
Sb4i—Zr1—Sb3ii | 130.54 (3) | Zr2ii—Sb2—Sb1 | 123.991 (17) |
Sb4ii—Zr1—Sb3ii | 78.623 (15) | Zr2i—Sb2—Sb1 | 123.991 (17) |
Sb6—Zr1—Sb3ii | 76.910 (19) | Zr2viii—Sb2—Sb1 | 97.986 (19) |
Sb1iii—Zr1—Sb3ii | 64.250 (16) | Ni1i—Sb2—Sb2xi | 163.78 (3) |
Sb4i—Zr1—Sb3i | 78.623 (15) | Ni1ii—Sb2—Sb2xi | 92.085 (17) |
Sb4ii—Zr1—Sb3i | 130.54 (3) | Zr2ii—Sb2—Sb2xi | 57.900 (17) |
Sb6—Zr1—Sb3i | 76.911 (19) | Zr2i—Sb2—Sb2xi | 106.03 (2) |
Sb1iii—Zr1—Sb3i | 64.250 (16) | Zr2viii—Sb2—Sb2xi | 56.628 (16) |
Sb3ii—Zr1—Sb3i | 79.45 (2) | Sb1—Sb2—Sb2xi | 129.982 (17) |
Sb4i—Zr1—Sb7ii | 136.09 (3) | Ni1i—Sb2—Sb2xii | 92.085 (17) |
Sb4ii—Zr1—Sb7ii | 83.092 (15) | Ni1ii—Sb2—Sb2xii | 163.78 (3) |
Sb6—Zr1—Sb7ii | 62.103 (16) | Zr2ii—Sb2—Sb2xii | 106.03 (2) |
Sb1iii—Zr1—Sb7ii | 140.627 (10) | Zr2i—Sb2—Sb2xii | 57.900 (16) |
Sb3ii—Zr1—Sb7ii | 86.630 (15) | Zr2viii—Sb2—Sb2xii | 56.628 (16) |
Sb3i—Zr1—Sb7ii | 138.75 (3) | Sb1—Sb2—Sb2xii | 129.982 (17) |
Sb4i—Zr1—Sb7i | 83.092 (15) | Sb2xi—Sb2—Sb2xii | 75.00 (2) |
Sb4ii—Zr1—Sb7i | 136.09 (3) | Ni1i—Sb2—Sb4x | 107.40 (3) |
Sb6—Zr1—Sb7i | 62.103 (16) | Ni1ii—Sb2—Sb4x | 53.08 (2) |
Sb1iii—Zr1—Sb7i | 140.627 (10) | Zr2ii—Sb2—Sb4x | 101.431 (12) |
Sb3ii—Zr1—Sb7i | 138.75 (3) | Zr2i—Sb2—Sb4x | 169.95 (2) |
Sb3i—Zr1—Sb7i | 86.630 (15) | Zr2viii—Sb2—Sb4x | 55.446 (14) |
Sb7ii—Zr1—Sb7i | 78.71 (2) | Sb1—Sb2—Sb4x | 60.840 (12) |
Sb4i—Zr1—Sb5 | 75.722 (19) | Sb2xi—Sb2—Sb4x | 69.745 (15) |
Sb4ii—Zr1—Sb5 | 75.722 (19) | Sb2xii—Sb2—Sb4x | 112.07 (2) |
Sb6—Zr1—Sb5 | 103.21 (2) | Ni1i—Sb2—Sb4ix | 53.08 (2) |
Sb1iii—Zr1—Sb5 | 128.31 (3) | Ni1ii—Sb2—Sb4ix | 107.40 (3) |
Sb3ii—Zr1—Sb5 | 140.115 (11) | Zr2ii—Sb2—Sb4ix | 169.95 (2) |
Sb3i—Zr1—Sb5 | 140.115 (11) | Zr2i—Sb2—Sb4ix | 101.431 (12) |
Sb7ii—Zr1—Sb5 | 60.504 (16) | Zr2viii—Sb2—Sb4ix | 55.446 (14) |
Sb7i—Zr1—Sb5 | 60.504 (16) | Sb1—Sb2—Sb4ix | 60.840 (12) |
Sb6iv—Zr2—Sb6v | 83.52 (2) | Sb2xi—Sb2—Sb4ix | 112.07 (2) |
Sb6iv—Zr2—Sb4ii | 83.851 (14) | Sb2xii—Sb2—Sb4ix | 69.745 (15) |
Sb6v—Zr2—Sb4ii | 141.21 (3) | Sb4x—Sb2—Sb4ix | 72.732 (15) |
Sb6iv—Zr2—Sb4i | 141.21 (3) | Zr3ii—Sb3—Zr3i | 81.94 (2) |
Sb6v—Zr2—Sb4i | 83.851 (14) | Zr3ii—Sb3—Zr1v | 139.58 (2) |
Sb4ii—Zr2—Sb4i | 83.45 (2) | Zr3i—Sb3—Zr1v | 85.597 (17) |
Sb6iv—Zr2—Sb2v | 134.23 (3) | Zr3ii—Sb3—Zr1iv | 85.597 (16) |
Sb6v—Zr2—Sb2v | 79.287 (15) | Zr3i—Sb3—Zr1iv | 139.58 (2) |
Sb4ii—Zr2—Sb2v | 133.05 (3) | Zr1v—Sb3—Zr1iv | 79.45 (2) |
Sb4i—Zr2—Sb2v | 78.456 (15) | Zr3ii—Sb3—Zr3xiii | 107.962 (18) |
Sb6iv—Zr2—Sb2iv | 79.287 (15) | Zr3i—Sb3—Zr3xiii | 107.962 (18) |
Sb6v—Zr2—Sb2iv | 134.23 (3) | Zr1v—Sb3—Zr3xiii | 112.458 (19) |
Sb4ii—Zr2—Sb2iv | 78.456 (15) | Zr1iv—Sb3—Zr3xiii | 112.458 (19) |
Sb4i—Zr2—Sb2iv | 133.05 (3) | Zr3ii—Sb3—Sb1ix | 162.39 (2) |
Sb2v—Zr2—Sb2iv | 83.09 (2) | Zr3i—Sb3—Sb1ix | 99.468 (13) |
Sb6iv—Zr2—Sb2iii | 137.839 (11) | Zr1v—Sb3—Sb1ix | 57.799 (16) |
Sb6v—Zr2—Sb2iii | 137.839 (11) | Zr1iv—Sb3—Sb1ix | 103.64 (2) |
Sb4ii—Zr2—Sb2iii | 67.583 (16) | Zr3xiii—Sb3—Sb1ix | 54.764 (13) |
Sb4i—Zr2—Sb2iii | 67.583 (16) | Zr3ii—Sb3—Sb1x | 99.468 (13) |
Sb2v—Zr2—Sb2iii | 65.474 (17) | Zr3i—Sb3—Sb1x | 162.39 (2) |
Sb2iv—Zr2—Sb2iii | 65.474 (17) | Zr1v—Sb3—Sb1x | 103.64 (2) |
Sb6iv—Zr2—Sb5 | 63.641 (17) | Zr1iv—Sb3—Sb1x | 57.799 (15) |
Sb6v—Zr2—Sb5 | 63.641 (17) | Zr3xiii—Sb3—Sb1x | 54.764 (13) |
Sb4ii—Zr2—Sb5 | 77.886 (19) | Sb1ix—Sb3—Sb1x | 73.942 (15) |
Sb4i—Zr2—Sb5 | 77.886 (19) | Ni1xiii—Sb4—Zr2v | 106.24 (2) |
Sb2v—Zr2—Sb5 | 137.621 (11) | Ni1xiii—Sb4—Zr2iv | 106.24 (2) |
Sb2iv—Zr2—Sb5 | 137.621 (12) | Zr2v—Sb4—Zr2iv | 83.45 (2) |
Sb2iii—Zr2—Sb5 | 132.94 (3) | Ni1xiii—Sb4—Zr1iv | 108.49 (2) |
Sb6iv—Zr2—Sb7 | 58.813 (15) | Zr2v—Sb4—Zr1iv | 145.27 (2) |
Sb6v—Zr2—Sb7 | 58.813 (15) | Zr2iv—Sb4—Zr1iv | 86.535 (17) |
Sb4ii—Zr2—Sb7 | 137.823 (12) | Ni1xiii—Sb4—Zr1v | 108.49 (2) |
Sb4i—Zr2—Sb7 | 137.823 (12) | Zr2v—Sb4—Zr1v | 86.535 (17) |
Sb2v—Zr2—Sb7 | 76.068 (18) | Zr2iv—Sb4—Zr1v | 145.27 (2) |
Sb2iv—Zr2—Sb7 | 76.068 (18) | Zr1iv—Sb4—Zr1v | 83.03 (2) |
Sb2iii—Zr2—Sb7 | 127.55 (2) | Ni1xiii—Sb4—Sb1x | 50.403 (16) |
Sb5—Zr2—Sb7 | 99.51 (2) | Zr2v—Sb4—Sb1x | 155.92 (2) |
Sb1iv—Zr3—Sb1v | 83.21 (2) | Zr2iv—Sb4—Sb1x | 96.928 (13) |
Sb1iv—Zr3—Sb3v | 136.27 (3) | Zr1iv—Sb4—Sb1x | 58.375 (16) |
Sb1v—Zr3—Sb3v | 81.481 (15) | Zr1v—Sb4—Sb1x | 105.36 (2) |
Sb1iv—Zr3—Sb3iv | 81.481 (16) | Ni1xiii—Sb4—Sb1ix | 50.403 (16) |
Sb1v—Zr3—Sb3iv | 136.27 (3) | Zr2v—Sb4—Sb1ix | 96.928 (13) |
Sb3v—Zr3—Sb3iv | 81.94 (2) | Zr2iv—Sb4—Sb1ix | 155.92 (2) |
Sb1iv—Zr3—Sb5iv | 77.172 (16) | Zr1iv—Sb4—Sb1ix | 105.36 (2) |
Sb1v—Zr3—Sb5iv | 130.41 (3) | Zr1v—Sb4—Sb1ix | 58.375 (16) |
Sb3v—Zr3—Sb5iv | 140.80 (3) | Sb1x—Sb4—Sb1ix | 73.066 (15) |
Sb3iv—Zr3—Sb5iv | 85.155 (14) | Ni1xiii—Sb4—Sb2x | 49.662 (16) |
Sb1iv—Zr3—Sb5v | 130.41 (3) | Zr2v—Sb4—Sb2x | 104.14 (2) |
Sb1v—Zr3—Sb5v | 77.172 (15) | Zr2iv—Sb4—Sb2x | 56.972 (16) |
Sb3v—Zr3—Sb5v | 85.155 (14) | Zr1iv—Sb4—Sb2x | 97.880 (13) |
Sb3iv—Zr3—Sb5v | 140.80 (3) | Zr1v—Sb4—Sb2x | 157.39 (2) |
Sb5iv—Zr3—Sb5v | 81.89 (2) | Sb1x—Sb4—Sb2x | 57.912 (14) |
Sb1iv—Zr3—Sb6vi | 136.371 (13) | Sb1ix—Sb4—Sb2x | 100.063 (17) |
Sb1v—Zr3—Sb6vi | 136.371 (13) | Ni1xiii—Sb4—Sb2ix | 49.662 (16) |
Sb3v—Zr3—Sb6vi | 77.956 (19) | Zr2v—Sb4—Sb2ix | 56.972 (16) |
Sb3iv—Zr3—Sb6vi | 77.956 (19) | Zr2iv—Sb4—Sb2ix | 104.14 (2) |
Sb5iv—Zr3—Sb6vi | 63.164 (17) | Zr1iv—Sb4—Sb2ix | 157.39 (2) |
Sb5v—Zr3—Sb6vi | 63.164 (17) | Zr1v—Sb4—Sb2ix | 97.880 (13) |
Sb1iv—Zr3—Sb3vii | 64.388 (16) | Sb1x—Sb4—Sb2ix | 100.063 (17) |
Sb1v—Zr3—Sb3vii | 64.388 (16) | Sb1ix—Sb4—Sb2ix | 57.912 (14) |
Sb3v—Zr3—Sb3vii | 72.038 (18) | Sb2x—Sb4—Sb2ix | 72.734 (15) |
Sb3iv—Zr3—Sb3vii | 72.038 (18) | Zr3ii—Sb5—Zr3i | 81.89 (2) |
Sb5iv—Zr3—Sb3vii | 137.351 (12) | Zr3ii—Sb5—Zr2 | 115.73 (2) |
Sb5v—Zr3—Sb3vii | 137.351 (12) | Zr3i—Sb5—Zr2 | 115.73 (2) |
Sb6vi—Zr3—Sb3vii | 139.85 (3) | Zr3ii—Sb5—Zr1 | 131.970 (16) |
Sb1iv—Zr3—Ni1 | 49.295 (15) | Zr3i—Sb5—Zr1 | 131.970 (16) |
Sb1v—Zr3—Ni1 | 49.295 (15) | Zr2—Sb5—Zr1 | 82.62 (2) |
Sb3v—Zr3—Ni1 | 130.769 (18) | Zr3ii—Sb5—Sb7ii | 74.105 (16) |
Sb3iv—Zr3—Ni1 | 130.769 (18) | Zr3i—Sb5—Sb7ii | 123.11 (2) |
Sb5iv—Zr3—Ni1 | 84.63 (2) | Zr2—Sb5—Sb7ii | 121.163 (17) |
Sb5v—Zr3—Ni1 | 84.63 (2) | Zr1—Sb5—Sb7ii | 59.174 (15) |
Sb6vi—Zr3—Ni1 | 136.18 (3) | Zr3ii—Sb5—Sb7i | 123.11 (2) |
Sb3vii—Zr3—Ni1 | 83.97 (2) | Zr3i—Sb5—Sb7i | 74.105 (16) |
Sb7—Ni1—Sb2iv | 99.26 (3) | Zr2—Sb5—Sb7i | 121.163 (17) |
Sb7—Ni1—Sb2v | 99.26 (3) | Zr1—Sb5—Sb7i | 59.174 (15) |
Sb2iv—Ni1—Sb2v | 98.71 (3) | Sb7ii—Sb5—Sb7i | 77.460 (18) |
Sb7—Ni1—Sb1v | 106.99 (3) | Zr3ii—Sb5—Sb6v | 107.25 (2) |
Sb2iv—Ni1—Sb1v | 153.71 (4) | Zr3i—Sb5—Sb6v | 58.444 (16) |
Sb2v—Ni1—Sb1v | 75.925 (16) | Zr2—Sb5—Sb6v | 57.301 (14) |
Sb7—Ni1—Sb1iv | 106.99 (3) | Zr1—Sb5—Sb6v | 119.266 (16) |
Sb2iv—Ni1—Sb1iv | 75.925 (16) | Sb7ii—Sb5—Sb6v | 178.23 (2) |
Sb2v—Ni1—Sb1iv | 153.71 (4) | Sb7i—Sb5—Sb6v | 102.523 (11) |
Sb1v—Ni1—Sb1iv | 97.37 (3) | Zr3ii—Sb5—Sb6iv | 58.444 (16) |
Sb7—Ni1—Sb4vii | 174.50 (4) | Zr3i—Sb5—Sb6iv | 107.25 (2) |
Sb2iv—Ni1—Sb4vii | 77.26 (2) | Zr2—Sb5—Sb6iv | 57.302 (14) |
Sb2v—Ni1—Sb4vii | 77.26 (2) | Zr1—Sb5—Sb6iv | 119.266 (16) |
Sb1v—Ni1—Sb4vii | 76.46 (2) | Sb7ii—Sb5—Sb6iv | 102.523 (11) |
Sb1iv—Ni1—Sb4vii | 76.46 (2) | Sb7i—Sb5—Sb6iv | 178.23 (2) |
Sb7—Ni1—Zr3 | 77.45 (3) | Sb6v—Sb5—Sb6iv | 77.438 (18) |
Sb2iv—Ni1—Zr3 | 130.623 (17) | Zr2ii—Sb6—Zr2i | 83.52 (2) |
Sb2v—Ni1—Zr3 | 130.623 (17) | Zr2ii—Sb6—Zr1 | 127.554 (17) |
Sb1v—Ni1—Zr3 | 59.04 (2) | Zr2i—Sb6—Zr1 | 127.554 (17) |
Sb1iv—Ni1—Zr3 | 59.04 (2) | Zr2ii—Sb6—Zr3xiv | 117.435 (19) |
Sb4vii—Ni1—Zr3 | 108.05 (3) | Zr2i—Sb6—Zr3xiv | 117.435 (19) |
Ni1ii—Sb1—Ni1i | 97.37 (3) | Zr1—Sb6—Zr3xiv | 87.06 (2) |
Ni1ii—Sb1—Zr3i | 133.06 (3) | Zr2ii—Sb6—Sb5ii | 59.058 (16) |
Ni1i—Sb1—Zr3i | 71.66 (2) | Zr2i—Sb6—Sb5ii | 108.60 (2) |
Ni1ii—Sb1—Zr3ii | 71.66 (2) | Zr1—Sb6—Sb5ii | 123.387 (17) |
Ni1i—Sb1—Zr3ii | 133.06 (3) | Zr3xiv—Sb6—Sb5ii | 58.391 (14) |
Zr3i—Sb1—Zr3ii | 83.21 (2) | Zr2ii—Sb6—Sb5i | 108.60 (2) |
Ni1ii—Sb1—Zr1viii | 108.17 (2) | Zr2i—Sb6—Sb5i | 59.058 (16) |
Ni1i—Sb1—Zr1viii | 108.17 (2) | Zr1—Sb6—Sb5i | 123.387 (17) |
Zr3i—Sb1—Zr1viii | 118.681 (19) | Zr3xiv—Sb6—Sb5i | 58.391 (14) |
Zr3ii—Sb1—Zr1viii | 118.681 (19) | Sb5ii—Sb6—Sb5i | 77.437 (18) |
Ni1ii—Sb1—Sb2 | 51.665 (19) | Zr2ii—Sb6—Sb7i | 117.02 (2) |
Ni1i—Sb1—Sb2 | 51.665 (19) | Zr2i—Sb6—Sb7i | 67.743 (16) |
Zr3i—Sb1—Sb2 | 119.976 (18) | Zr1—Sb6—Sb7i | 60.643 (16) |
Zr3ii—Sb1—Sb2 | 119.976 (18) | Zr3xiv—Sb6—Sb7i | 125.528 (15) |
Zr1viii—Sb1—Sb2 | 98.147 (19) | Sb5ii—Sb6—Sb7i | 175.37 (2) |
Ni1ii—Sb1—Sb3ix | 164.74 (2) | Sb5i—Sb6—Sb7i | 102.379 (11) |
Ni1i—Sb1—Sb3ix | 93.514 (18) | Zr2ii—Sb6—Sb7ii | 67.743 (16) |
Zr3i—Sb1—Sb3ix | 60.848 (17) | Zr2i—Sb6—Sb7ii | 117.02 (2) |
Zr3ii—Sb1—Sb3ix | 108.15 (2) | Zr1—Sb6—Sb7ii | 60.643 (16) |
Zr1viii—Sb1—Sb3ix | 57.951 (14) | Zr3xiv—Sb6—Sb7ii | 125.528 (15) |
Sb2—Sb1—Sb3ix | 131.792 (14) | Sb5ii—Sb6—Sb7ii | 102.379 (11) |
Ni1ii—Sb1—Sb3x | 93.514 (18) | Sb5i—Sb6—Sb7ii | 175.37 (2) |
Ni1i—Sb1—Sb3x | 164.74 (2) | Sb7i—Sb6—Sb7ii | 77.422 (18) |
Zr3i—Sb1—Sb3x | 108.15 (2) | Ni1—Sb7—Zr1iv | 140.543 (10) |
Zr3ii—Sb1—Sb3x | 60.848 (17) | Ni1—Sb7—Zr1v | 140.543 (10) |
Zr1viii—Sb1—Sb3x | 57.951 (14) | Zr1iv—Sb7—Zr1v | 78.71 (2) |
Sb2—Sb1—Sb3x | 131.792 (13) | Ni1—Sb7—Sb5v | 94.92 (2) |
Sb3ix—Sb1—Sb3x | 73.942 (16) | Zr1iv—Sb7—Sb5v | 107.36 (2) |
Ni1ii—Sb1—Sb4x | 53.14 (2) | Zr1v—Sb7—Sb5v | 60.321 (16) |
Ni1i—Sb1—Sb4x | 107.12 (3) | Ni1—Sb7—Sb5iv | 94.92 (2) |
Zr3i—Sb1—Sb4x | 173.544 (17) | Zr1iv—Sb7—Sb5iv | 60.321 (16) |
Zr3ii—Sb1—Sb4x | 101.722 (12) | Zr1v—Sb7—Sb5iv | 107.36 (2) |
Zr1viii—Sb1—Sb4x | 55.321 (14) | Sb5v—Sb7—Sb5iv | 77.460 (18) |
Sb2—Sb1—Sb4x | 61.249 (13) | Ni1—Sb7—Sb6iv | 103.12 (2) |
Sb3ix—Sb1—Sb4x | 113.263 (18) | Zr1iv—Sb7—Sb6iv | 57.253 (16) |
Sb3x—Sb1—Sb4x | 71.272 (14) | Zr1v—Sb7—Sb6iv | 104.61 (2) |
Ni1ii—Sb1—Sb4ix | 107.12 (3) | Sb5v—Sb7—Sb6iv | 161.93 (2) |
Ni1i—Sb1—Sb4ix | 53.14 (2) | Sb5iv—Sb7—Sb6iv | 99.677 (12) |
Zr3i—Sb1—Sb4ix | 101.722 (12) | Ni1—Sb7—Sb6v | 103.12 (2) |
Zr3ii—Sb1—Sb4ix | 173.544 (17) | Zr1iv—Sb7—Sb6v | 104.61 (2) |
Zr1viii—Sb1—Sb4ix | 55.321 (14) | Zr1v—Sb7—Sb6v | 57.253 (16) |
Sb2—Sb1—Sb4ix | 61.249 (13) | Sb5v—Sb7—Sb6v | 99.677 (12) |
Sb3ix—Sb1—Sb4ix | 71.272 (14) | Sb5iv—Sb7—Sb6v | 161.93 (2) |
Sb3x—Sb1—Sb4ix | 113.263 (18) | Sb6iv—Sb7—Sb6v | 77.422 (18) |
Sb4x—Sb1—Sb4ix | 73.066 (15) | Ni1—Sb7—Zr2 | 66.67 (2) |
Ni1i—Sb2—Ni1ii | 98.71 (3) | Zr1iv—Sb7—Zr2 | 110.11 (2) |
Ni1i—Sb2—Zr2ii | 136.93 (3) | Zr1v—Sb7—Zr2 | 110.11 (2) |
Ni1ii—Sb2—Zr2ii | 73.99 (2) | Sb5v—Sb7—Zr2 | 138.240 (11) |
Ni1i—Sb2—Zr2i | 73.99 (2) | Sb5iv—Sb7—Zr2 | 138.240 (11) |
Ni1ii—Sb2—Zr2i | 136.93 (3) | Sb6iv—Sb7—Zr2 | 53.446 (14) |
Zr2ii—Sb2—Zr2i | 83.09 (2) | Sb6v—Sb7—Zr2 | 53.446 (14) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) −x+1/2, −y, z−1/2; (iii) x+1/2, y, −z+1/2; (iv) −x+1/2, −y, z+1/2; (v) −x+1/2, −y+1, z+1/2; (vi) x, y, z+1; (vii) x+1/2, y, −z+3/2; (viii) x−1/2, y, −z+1/2; (ix) −x, −y+1, −z+1; (x) −x, −y, −z+1; (xi) −x, −y, −z; (xii) −x, −y+1, −z; (xiii) x−1/2, y, −z+3/2; (xiv) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | Zr3NiSb7 |
Mr | 1184.62 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 295 |
a, b, c (Å) | 17.5165 (19), 3.9266 (4), 14.3968 (15) |
V (Å3) | 990.22 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 23.56 |
Crystal size (mm) | 0.37 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART 1000 diffractometer |
Absorption correction | Numerical (SHELXTL; Sheldrick, 2008) |
Tmin, Tmax | 0.057, 0.426 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11118, 1722, 1500 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.054, 1.18 |
No. of reflections | 1722 |
No. of parameters | 68 |
Δρmax, Δρmin (e Å−3) | 2.12, −2.89 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
Zr1—Sb4i | 2.9620 (6) | Zr3—Sb6v | 2.9975 (8) |
Zr1—Sb6 | 2.9876 (8) | Zr3—Sb3vi | 3.1616 (9) |
Zr1—Sb1ii | 3.0669 (8) | Ni1—Sb7 | 2.5728 (10) |
Zr1—Sb3iii | 3.0720 (7) | Ni1—Sb2iv | 2.5875 (7) |
Zr1—Sb7iii | 3.0960 (6) | Ni1—Sb1iv | 2.6140 (7) |
Zr1—Sb5 | 3.1324 (8) | Ni1—Sb4vi | 2.7141 (10) |
Zr2—Sb6iv | 2.9478 (6) | Sb1—Sb2 | 3.1998 (8) |
Zr2—Sb4iii | 2.9499 (6) | Sb1—Sb3vii | 3.2645 (6) |
Zr2—Sb2iv | 2.9604 (6) | Sb1—Sb4viii | 3.2981 (6) |
Zr2—Sb2ii | 3.0029 (8) | Sb2—Sb2ix | 3.2250 (7) |
Zr2—Sb5 | 3.0044 (8) | Sb2—Sb4viii | 3.3111 (6) |
Zr3—Sb1iv | 2.9569 (6) | Sb5—Sb7iii | 3.1380 (6) |
Zr3—Sb3iv | 2.9944 (7) | Sb5—Sb6iv | 3.1387 (6) |
Zr3—Sb5iv | 2.9958 (6) | Sb6—Sb7i | 3.1393 (6) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x+1/2, y, −z+1/2; (iii) −x+1/2, −y, z−1/2; (iv) −x+1/2, −y, z+1/2; (v) x, y, z+1; (vi) x+1/2, y, −z+3/2; (vii) −x, −y+1, −z+1; (viii) −x, −y, −z+1; (ix) −x, −y, −z. |
Acknowledgements
The work was in part supported by the Ministry of Ukraine for Education and Science (grant No. 0106U001299).
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Emsley, J. (1991). The Elements, 2nd ed. Oxford: Clarendon Press. Google Scholar
Garcia, E. & Corbett, J. D. (1988). J. Solid State Chem. 73, 440–451. CrossRef CAS Web of Science Google Scholar
Romaka, L., Tkachuk, A. & Stadnyk, Yu. (2007). 11th Scientific Conference `L'viv Chemistry Reading 2007', Collected Abstracts, p. H37. L'viv: Publishing Center of Ivan Franko National University. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tkachuk, A., Romaka, L. & Stadnyk, Yu. (2007). 10th International Conference on Crystal Chemistry of Intermetallic Compounds, L'viv (Ukraine), Collected Abstracts, p. 71. L'viv: Publishing Center of Ivan Franko National University. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Antimony based intermetallics attract interest due to interesting thermoelectric properties of some phases, e.g. antimonides with MgAgAs and Y3Au3Sb4 type structures. The investigation of new intermetallic phases is useful for the development of new materials, and the accurate determination of their crystal structures is a basic requirement for a better understanding of the corresponding physical properties.
Investigation of the Zr–Ni–Sb ternary system revealed the presence of several compounds in the Sb-enriched area (Romaka et al., 2007), including the new title antimonide with composition Zr27Ni9Sb64 (in %at). Interatomic distances (Table 1) between Sb atoms are in good agreement with the sum of the atomic radius (Emsley, 1991), whereas the majority of Zr—Sb and all Ni—Sb distances are somewhat shortened. Such shortening may be explained by partial covalent bonding which appears to be significant between Ni—Sb atoms because their contact distances are rather close to the sum of their covalent radii (2.56 Å). As the majority of ternary intermetallics are constructed from the fragments of their most stable binary compounds, the structure analysis of the antimonides Zr3NiSb7 and the already known Zr2NiSb3 (Tkachuk et al., 2007) in the Sb-enriched area shows that both can be derived from the binary compound ZrSb2 (Garcia & Corbett, 1988), which crystallizes in the PbCl2 structure type.
Zr3NiSb7 belongs to the family of two-layer structures. It may be represented as a net of trigonal prisms formed by Sb atoms that are bridged by nickel atoms (Fig. 1a). Such an arrangement is very similar to that in the binary ZrSb2 structure (Fig. 1b). The coordination polyhedra are distorted tri-capped trigonal prisms for the Zr atoms, and distorted octahedra for Ni atoms. In an alternative description, the Zr3NiSb7 structure contains fragments of the hypothetical "Zr2Ni2Sb5" and "Zr4Sb9" structures (Fig. 2) which are so far unknown for the ternary Zr–Ni–Sb or binary Zr–Sb systems. The main feature of the Zr3NiSb7 structure is the absence of covalent bonding between antimony atoms in contrast to the ZrSb2 structure. The general conclusion is that the presence of Ni atoms intensifies the interaction between Zr/Ni and Sb and, at the same time, reduces the bonding between Sb atoms. One may speculate that the composition of the Zr3NiSb7 compound may be the boundary limit of some solid solutions based on ZrSb2. However, the detailed study of the phase equilibria in the Zr–Ni–Sb system did not show a formation of any substitutional or interstitial solid solution. Moreover, the diffraction patterns of Zr3NiSb7 and ZrSb2 are rather different.