metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1,8-Bis[2-(2-oxido­benzyl­­idene­amino)phen­­oxy]-3,6-dioxa­octa­ne}nitrato­praseodymium(III) tri­chloro­methane solvate

aDepartment of Chemistry, State Key Laboratory of Applied Organic Chemistry, College of Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and cDepartment of Chemistry, Liaocheng University, Liaocheng 252000, People's Republic of China
*Correspondence e-mail: liuws@lzu.edu.cn

(Received 26 April 2008; accepted 9 July 2008; online 31 July 2008)

In the title compound, [Pr(C32H30N2O6)(NO3)]·CHCl3, the PrIII ion is ten-coordinated by eight O atoms and two N atoms from the acyclic crown-type Schiff base ligand and the bidentate nitrate group. The coordination polyhedron around PrIII is a distorted bicapped square anti­prism. The chloro­form solvent mol­ecule is not involved either in coordination to the PrIII center or in hydrogen bonding to the complex. The Pr—O(phenolate) bonds are significantly shorter than the Pr—O(ether) and Pr—O(nitrate) bonds, which suggests that the Pr—O(phenolate) bond is stronger than these other bonds. In the crystal structure, the acyclic crown-type Schiff base ligand wraps around the PrIII centre, forming a pseudo-ring.

Related literature

For general backgound, see: Wen et al. (2001[Wen, Y.-H., Qin, Z. & Liu, W.-S. (2001). J. Radioanal. Nucl. Chem. 250, 285-289.]); Liu et al. (2004[Liu, W.-S., Li, X.-F., Wen, Y.-H. & Tan, M.-Y. (2004). Dalton Trans. pp. 640-644.]). For related structures, see: Yu et al. (2006[Yu, T.-Z., Su, W.-M., Li, W.-L. & Hong, Z.-R. (2006). Inorg. Chim. Acta, 359, 2246-2251.]); Ding et al. (2007[Ding, X.-S., Yu, T.-Z. & Liu, X. (2007). Hua Xue Tong Bao, 6, 463-466.]). For related literature, see: Si et al. (1994[Si, J.-M., Wu, Y.-J., Cai, L., Liu, Y.-Z. & Du, B.-S. (1994). J. Inclusion Phenom. Mol. Recognit. Chem. 17, 249-258.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr(C32H30N2O6)(NO3)]·CHCl3

  • Mr = 860.87

  • Monoclinic, P 21 /c

  • a = 11.3454 (14) Å

  • b = 20.150 (2) Å

  • c = 15.4676 (17) Å

  • β = 100.585 (2)°

  • V = 3475.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 298 (2) K

  • 0.48 × 0.43 × 0.21 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.498, Tmax = 0.718

  • 17233 measured reflections

  • 6118 independent reflections

  • 4284 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.083

  • S = 1.03

  • 6118 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pr1—O6 2.269 (3)
Pr1—O5 2.278 (3)
Pr1—N1 2.646 (3)
Pr1—O8 2.649 (3)
Pr1—O7 2.649 (3)
Pr1—N2 2.670 (4)
Pr1—O1 2.708 (3)
Pr1—O2 2.710 (3)
Pr1—O3 2.787 (3)
Pr1—O4 2.801 (3)
O6—Pr1—N1 79.26 (11)
O6—Pr1—O7 76.36 (11)
O8—Pr1—O7 47.81 (10)
O5—Pr1—N2 77.19 (11)
N1—Pr1—N2 79.07 (10)
O7—Pr1—N2 92.76 (10)
N1—Pr1—O1 59.47 (9)
O1—Pr1—O2 60.33 (8)
O2—Pr1—O3 60.76 (9)
O5—Pr1—O4 73.42 (9)
N2—Pr1—O4 56.72 (9)
O3—Pr1—O4 60.53 (8)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Open chain polyethers offer many advantages over traditional crown ethers (Liu et al.,2004). They are excellent reagents for activating ion-selective electrodes and extracts of rare earth ions (Wen et al., 2001). In recent years the structures and properties of complexes with the zinc(II) ion, rare earth ions, and non-cyclic crown-type Schiff bases have been reported (Ding et al., 2007; Yu et al., 2006). To further understand the ability of these compounds to complex rare earth ions, we have prepared a non-cyclic crown-type Schiff base,1,8-bis[2-(2-hydroxyphenylideneimino)phenoxy]-3,6-dioxaoctane (H2L), as a ligand and investigated the reaction of H2L with Pr(NO3)3.6H2O. As part of a series of studies, we report here the crystal structure of the title compound. The structure of the complex is illustrated in Fig.1. Selected bond lengths and angles are given in Table 1. The PrIII ion is coordinated by ten donor atoms, eight of which belong to the non-cyclic crown-type Schiff base ligand and the remaining two to the bidentate nitrate group. The coordination polyhedron around PrIII is a distorted bicapped square antiprism (Fig. 2). The chloroform solvent molecule is not involved either in coordination to the PrIII center or in hydrogen bonding to the complex. The Pr—O (phenolate) bonds are stronger than the other Pr—O bonds. In the crystal structure, the non-cyclic crown-type Schiff base ligand wraps around the PrIII centre, forming a pseudo-ring.

Related literature top

For general backgound, see: Wen et al. (2001); Liu et al. (2004). For related structures, see: Yu et al. (2006); Ding et al. (2007). For related literature, see: Si et al. (1994).

Experimental top

H2L was synthesized using a literature method (Si et al.,1994). The title compound Pr(NO3)(C32H30O6N2)(CHCl3) was synthesized as follows: NaOH (8.0 mg, 0.2 mmol) was added to 10 ml of ethyl acetate solution containing H2L (54.0 mg, 0.1 mmol). The mixture was stirred for 10 min at room temperature to obtain a yellow solution. 5 ml of ethyl acetate solution containing Pr(NO3)3.6H2O (43.4 mg, 0.1 mmol) was then added to the mixture and a yellow precipitate formed. The precipitate was collected and washed three times with ethyl acetate. Further drying in a vacuum afforded a yellow powder. Yellow single crystals of the title compound were grown from a mixed methanol/chloroform solution (v:v 1:2) by slow evaporation at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å, and with Uiso(H)= 1.2Ueq(C). The highest residual electron density peak is located 1.32 Å from O6.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The coordination polyhedron of the title compound, showing the distorted bicapped square antiprism.
{1,8-Bis[2-(2-oxidobenzylideneamino)phenoxy]-3,6- dioxaoctane}nitratopraseodymium(III) trichloromethane solvate top
Crystal data top
[Pr(C32H30N2O6)(NO3)]·CHCl3F(000) = 1728
Mr = 860.87Dx = 1.645 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3454 (14) ÅCell parameters from 5219 reflections
b = 20.150 (2) Åθ = 2.3–25.5°
c = 15.4676 (17) ŵ = 1.69 mm1
β = 100.585 (2)°T = 298 K
V = 3475.9 (7) Å3Block, yellow
Z = 40.48 × 0.43 × 0.21 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
6118 independent reflections
Radiation source: fine-focus sealed tube4284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.498, Tmax = 0.718k = 2320
17233 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
6118 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Pr(C32H30N2O6)(NO3)]·CHCl3V = 3475.9 (7) Å3
Mr = 860.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3454 (14) ŵ = 1.69 mm1
b = 20.150 (2) ÅT = 298 K
c = 15.4676 (17) Å0.48 × 0.43 × 0.21 mm
β = 100.585 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
6118 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4284 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.718Rint = 0.043
17233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.03Δρmax = 1.44 e Å3
6118 reflectionsΔρmin = 0.55 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.84007 (2)0.784583 (11)0.158214 (16)0.03001 (9)
Cl10.16296 (15)0.61952 (9)0.19132 (14)0.0999 (6)
Cl20.23419 (17)0.65708 (9)0.03000 (13)0.0984 (6)
Cl30.41044 (14)0.64221 (10)0.18791 (15)0.1164 (7)
N10.6762 (3)0.71096 (16)0.0580 (2)0.0339 (8)
N20.6852 (3)0.76463 (17)0.2664 (2)0.0348 (9)
N31.1034 (3)0.79143 (19)0.2513 (3)0.0436 (10)
C90.6446 (4)0.5878 (2)0.0482 (3)0.0503 (13)
H90.56460.59180.05340.060*
O10.9051 (2)0.69333 (14)0.04725 (19)0.0372 (7)
O20.9149 (3)0.82509 (15)0.01016 (19)0.0409 (8)
O30.9091 (3)0.91629 (14)0.1443 (2)0.0389 (7)
O40.8019 (2)0.87638 (13)0.2862 (2)0.0376 (7)
O50.6794 (2)0.84723 (13)0.09646 (19)0.0381 (7)
O60.8714 (2)0.68515 (14)0.2275 (2)0.0394 (7)
O71.0201 (3)0.80827 (17)0.2899 (2)0.0514 (9)
O81.0758 (3)0.78130 (15)0.1693 (2)0.0462 (8)
O91.2050 (3)0.7844 (2)0.2900 (3)0.0823 (13)
C10.9179 (4)0.7150 (2)0.0398 (3)0.0458 (12)
H1A0.83940.72000.07670.055*
H1B0.96230.68210.06660.055*
C20.9823 (4)0.7793 (2)0.0330 (3)0.0453 (12)
H2A1.06270.77410.00080.054*
H2B0.98820.79560.09110.054*
C30.9633 (5)0.8900 (2)0.0084 (3)0.0529 (14)
H3A0.95950.90420.05200.064*
H3B1.04670.89020.03750.064*
C40.8932 (5)0.9359 (2)0.0539 (3)0.0541 (14)
H4A0.92100.98110.04950.065*
H4B0.80900.93390.02700.065*
C50.8566 (4)0.9631 (2)0.1947 (3)0.0454 (12)
H5A0.77230.96900.17000.055*
H5B0.89641.00570.19500.055*
C60.8715 (4)0.9359 (2)0.2860 (3)0.0438 (12)
H6A0.95540.92630.30800.053*
H6B0.84540.96860.32450.053*
C70.8358 (4)0.6361 (2)0.0440 (3)0.0375 (11)
C80.7160 (4)0.6445 (2)0.0490 (3)0.0371 (11)
C100.6931 (5)0.5260 (2)0.0397 (4)0.0599 (15)
H100.64530.48840.03840.072*
C110.8117 (5)0.5196 (2)0.0331 (4)0.0609 (15)
H110.84380.47780.02700.073*
C120.8823 (5)0.5746 (2)0.0354 (3)0.0495 (13)
H120.96260.57010.03110.059*
C130.5709 (4)0.7263 (2)0.0152 (3)0.0386 (11)
H130.52750.69230.01640.046*
C140.5133 (4)0.7900 (2)0.0109 (3)0.0358 (10)
C150.5697 (4)0.8475 (2)0.0520 (3)0.0351 (10)
C160.5031 (4)0.9069 (2)0.0427 (3)0.0523 (13)
H160.53640.94500.07120.063*
C170.3912 (5)0.9097 (3)0.0070 (4)0.0635 (16)
H170.35020.94990.01290.076*
C180.3374 (5)0.8544 (3)0.0488 (4)0.0695 (17)
H180.26060.85680.08240.083*
C190.3990 (4)0.7954 (3)0.0402 (3)0.0525 (14)
H190.36350.75800.06920.063*
C200.6820 (4)0.8820 (2)0.2903 (3)0.0364 (11)
C210.6188 (4)0.8227 (2)0.2810 (3)0.0376 (11)
C220.4985 (4)0.8233 (3)0.2833 (3)0.0486 (13)
H220.45540.78380.27580.058*
C230.4404 (4)0.8817 (3)0.2966 (4)0.0577 (15)
H230.35900.88170.29870.069*
C240.5048 (5)0.9396 (3)0.3066 (4)0.0576 (15)
H240.46650.97900.31630.069*
C250.6248 (5)0.9408 (2)0.3027 (3)0.0507 (13)
H250.66700.98060.30820.061*
C260.6611 (4)0.7105 (2)0.3046 (3)0.0372 (11)
H260.60150.71300.33850.045*
C270.7169 (4)0.6467 (2)0.3000 (3)0.0357 (11)
C280.8194 (4)0.6370 (2)0.2618 (3)0.0348 (11)
C290.8640 (4)0.5720 (2)0.2616 (3)0.0462 (12)
H290.93060.56410.23580.055*
C300.8129 (5)0.5196 (2)0.2980 (3)0.0554 (14)
H300.84470.47720.29630.066*
C310.7142 (5)0.5299 (3)0.3372 (3)0.0550 (14)
H310.68010.49470.36250.066*
C320.6671 (4)0.5927 (2)0.3383 (3)0.0487 (13)
H320.60090.59960.36490.058*
C330.2640 (4)0.6656 (3)0.1447 (4)0.0643 (16)
H330.25440.71250.15890.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.02794 (14)0.03197 (14)0.02875 (14)0.00197 (11)0.00155 (9)0.00156 (12)
Cl10.0752 (12)0.0960 (13)0.1290 (17)0.0180 (10)0.0202 (11)0.0328 (12)
Cl20.1104 (14)0.0852 (12)0.1010 (15)0.0041 (10)0.0232 (11)0.0036 (11)
Cl30.0498 (10)0.1420 (17)0.150 (2)0.0073 (10)0.0020 (11)0.0466 (15)
N10.030 (2)0.033 (2)0.040 (2)0.0011 (17)0.0089 (17)0.0020 (18)
N20.033 (2)0.039 (2)0.031 (2)0.0044 (17)0.0038 (16)0.0001 (17)
N30.026 (2)0.053 (3)0.048 (3)0.0021 (19)0.0038 (19)0.002 (2)
C90.050 (3)0.048 (3)0.052 (3)0.010 (3)0.009 (3)0.010 (3)
O10.0364 (18)0.0414 (18)0.0343 (18)0.0057 (14)0.0081 (14)0.0002 (14)
O20.050 (2)0.0399 (19)0.0327 (19)0.0042 (15)0.0083 (15)0.0018 (15)
O30.0424 (19)0.0337 (17)0.041 (2)0.0066 (14)0.0079 (15)0.0002 (15)
O40.0342 (18)0.0356 (18)0.044 (2)0.0018 (14)0.0087 (14)0.0000 (15)
O50.0312 (17)0.0356 (17)0.0435 (19)0.0013 (14)0.0037 (14)0.0021 (15)
O60.0354 (18)0.0364 (17)0.047 (2)0.0035 (14)0.0083 (15)0.0129 (16)
O70.039 (2)0.069 (2)0.045 (2)0.0021 (17)0.0033 (16)0.0087 (18)
O80.0381 (18)0.065 (2)0.0342 (19)0.0018 (16)0.0036 (15)0.0025 (17)
O90.037 (2)0.128 (4)0.072 (3)0.006 (2)0.015 (2)0.009 (3)
C10.061 (3)0.052 (3)0.025 (3)0.000 (3)0.010 (2)0.005 (2)
C20.060 (3)0.043 (3)0.036 (3)0.006 (2)0.018 (2)0.004 (2)
C30.079 (4)0.042 (3)0.040 (3)0.012 (3)0.017 (3)0.004 (2)
C40.087 (4)0.032 (3)0.046 (3)0.006 (3)0.021 (3)0.009 (2)
C50.053 (3)0.028 (3)0.054 (3)0.010 (2)0.007 (3)0.007 (2)
C60.048 (3)0.038 (3)0.046 (3)0.008 (2)0.009 (2)0.007 (2)
C70.043 (3)0.036 (3)0.035 (3)0.007 (2)0.010 (2)0.002 (2)
C80.037 (3)0.035 (3)0.038 (3)0.004 (2)0.002 (2)0.008 (2)
C100.077 (4)0.039 (3)0.066 (4)0.018 (3)0.020 (3)0.010 (3)
C110.078 (4)0.031 (3)0.076 (4)0.005 (3)0.018 (3)0.008 (3)
C120.055 (3)0.036 (3)0.058 (4)0.008 (2)0.015 (3)0.008 (3)
C130.035 (3)0.041 (3)0.039 (3)0.011 (2)0.005 (2)0.007 (2)
C140.031 (2)0.043 (3)0.033 (3)0.001 (2)0.005 (2)0.002 (2)
C150.032 (3)0.045 (3)0.030 (3)0.003 (2)0.008 (2)0.003 (2)
C160.055 (3)0.049 (3)0.051 (3)0.012 (3)0.004 (3)0.002 (3)
C170.049 (3)0.071 (4)0.065 (4)0.026 (3)0.005 (3)0.003 (3)
C180.034 (3)0.093 (5)0.074 (4)0.017 (3)0.008 (3)0.004 (4)
C190.037 (3)0.066 (4)0.050 (3)0.003 (3)0.004 (2)0.002 (3)
C200.039 (3)0.039 (3)0.031 (3)0.007 (2)0.007 (2)0.001 (2)
C210.038 (3)0.041 (3)0.033 (3)0.003 (2)0.006 (2)0.002 (2)
C220.035 (3)0.054 (3)0.056 (3)0.003 (2)0.007 (2)0.002 (3)
C230.036 (3)0.072 (4)0.068 (4)0.007 (3)0.016 (3)0.004 (3)
C240.056 (4)0.056 (4)0.062 (4)0.019 (3)0.014 (3)0.003 (3)
C250.055 (3)0.046 (3)0.052 (3)0.000 (3)0.011 (3)0.000 (3)
C260.029 (2)0.054 (3)0.030 (2)0.010 (2)0.0087 (19)0.009 (2)
C270.041 (3)0.033 (3)0.031 (3)0.008 (2)0.002 (2)0.001 (2)
C280.033 (3)0.036 (3)0.032 (3)0.003 (2)0.002 (2)0.005 (2)
C290.050 (3)0.046 (3)0.043 (3)0.006 (2)0.009 (2)0.005 (2)
C300.068 (4)0.042 (3)0.052 (4)0.000 (3)0.001 (3)0.005 (3)
C310.073 (4)0.044 (3)0.045 (3)0.020 (3)0.004 (3)0.008 (3)
C320.050 (3)0.051 (3)0.044 (3)0.013 (3)0.007 (2)0.003 (3)
C330.046 (3)0.048 (3)0.100 (5)0.001 (3)0.016 (3)0.010 (3)
Geometric parameters (Å, º) top
Pr1—O62.269 (3)C5—H5B0.9700
Pr1—O52.278 (3)C6—H6A0.9700
Pr1—N12.646 (3)C6—H6B0.9700
Pr1—O82.649 (3)C7—C121.363 (6)
Pr1—O72.649 (3)C7—C81.386 (6)
Pr1—N22.670 (4)C10—C111.374 (7)
Pr1—O12.708 (3)C10—H100.9300
Pr1—O22.710 (3)C11—C121.364 (6)
Pr1—O32.787 (3)C11—H110.9300
Pr1—O42.801 (3)C12—H120.9300
Cl1—C331.733 (5)C13—C141.436 (6)
Cl2—C331.752 (6)C13—H130.9300
Cl3—C331.738 (5)C14—C191.393 (6)
N1—C131.293 (5)C14—C151.415 (6)
N1—C81.429 (5)C15—C161.408 (6)
N2—C261.293 (5)C16—C171.360 (7)
N2—C211.432 (5)C16—H160.9300
N3—O91.206 (5)C17—C181.374 (7)
N3—O71.255 (4)C17—H170.9300
N3—O81.266 (5)C18—C191.372 (7)
C9—C101.378 (6)C18—H180.9300
C9—C81.399 (6)C19—H190.9300
C9—H90.9300C20—C251.379 (6)
O1—C71.391 (5)C20—C211.388 (6)
O1—C11.448 (5)C21—C221.372 (6)
O2—C31.421 (5)C22—C231.382 (6)
O2—C21.438 (5)C22—H220.9300
O3—C51.422 (5)C23—C241.371 (7)
O3—C41.432 (5)C23—H230.9300
O4—C201.378 (5)C24—C251.374 (6)
O4—C61.437 (5)C24—H240.9300
O5—C151.306 (5)C25—H250.9300
O6—C281.298 (5)C26—C271.440 (6)
C1—C21.482 (6)C26—H260.9300
C1—H1A0.9700C27—C321.407 (6)
C1—H1B0.9700C27—C281.411 (6)
C2—H2A0.9700C28—C291.405 (6)
C2—H2B0.9700C29—C301.373 (6)
C3—C41.480 (6)C29—H290.9300
C3—H3A0.9700C30—C311.383 (7)
C3—H3B0.9700C30—H300.9300
C4—H4A0.9700C31—C321.375 (7)
C4—H4B0.9700C31—H310.9300
C5—C61.495 (6)C32—H320.9300
C5—H5A0.9700C33—H330.9800
O6—Pr1—O5136.97 (10)C3—C4—H4B110.1
O6—Pr1—N179.26 (11)H4A—C4—H4B108.4
O5—Pr1—N169.09 (10)O3—C5—C6106.8 (4)
O6—Pr1—O883.05 (10)O3—C5—H5A110.4
O5—Pr1—O8139.60 (10)C6—C5—H5A110.4
N1—Pr1—O8128.04 (10)O3—C5—H5B110.4
O6—Pr1—O776.36 (11)C6—C5—H5B110.4
O5—Pr1—O7131.84 (10)H5A—C5—H5B108.6
N1—Pr1—O7155.61 (11)O4—C6—C5109.9 (4)
O8—Pr1—O747.81 (10)O4—C6—H6A109.7
O6—Pr1—N268.58 (10)C5—C6—H6A109.7
O5—Pr1—N277.19 (11)O4—C6—H6B109.7
N1—Pr1—N279.07 (10)C5—C6—H6B109.7
O8—Pr1—N2136.75 (10)H6A—C6—H6B108.2
O7—Pr1—N292.76 (10)C12—C7—C8121.2 (4)
O6—Pr1—O170.29 (10)C12—C7—O1122.1 (4)
O5—Pr1—O1113.61 (10)C8—C7—O1116.8 (4)
N1—Pr1—O159.47 (9)C7—C8—C9118.2 (4)
O8—Pr1—O168.58 (9)C7—C8—N1116.8 (4)
O7—Pr1—O1110.38 (9)C9—C8—N1125.0 (4)
N2—Pr1—O1125.60 (9)C11—C10—C9120.3 (5)
O6—Pr1—O2128.24 (10)C11—C10—H10119.8
O5—Pr1—O280.19 (10)C9—C10—H10119.8
N1—Pr1—O288.25 (10)C12—C11—C10120.1 (5)
O8—Pr1—O265.98 (9)C12—C11—H11119.9
O7—Pr1—O2106.17 (10)C10—C11—H11119.9
N2—Pr1—O2156.82 (10)C7—C12—C11120.3 (5)
O1—Pr1—O260.33 (8)C7—C12—H12119.9
O6—Pr1—O3148.83 (10)C11—C12—H12119.9
O5—Pr1—O369.79 (9)N1—C13—C14127.4 (4)
N1—Pr1—O3131.76 (10)N1—C13—H13116.3
O8—Pr1—O374.57 (9)C14—C13—H13116.3
O7—Pr1—O372.54 (10)C19—C14—C15119.2 (4)
N2—Pr1—O3114.75 (10)C19—C14—C13117.6 (4)
O1—Pr1—O3118.97 (8)C15—C14—C13123.1 (4)
O2—Pr1—O360.76 (9)O5—C15—C16119.9 (4)
O6—Pr1—O4106.28 (10)O5—C15—C14122.8 (4)
O5—Pr1—O473.42 (9)C16—C15—C14117.4 (4)
N1—Pr1—O4126.95 (9)C17—C16—C15121.4 (5)
O8—Pr1—O4104.85 (9)C17—C16—H16119.3
O7—Pr1—O462.29 (9)C15—C16—H16119.3
N2—Pr1—O456.72 (9)C16—C17—C18121.4 (5)
O1—Pr1—O4172.66 (8)C16—C17—H17119.3
O2—Pr1—O4120.76 (8)C18—C17—H17119.3
O3—Pr1—O460.53 (8)C19—C18—C17118.8 (5)
C13—N1—C8117.0 (4)C19—C18—H18120.6
C13—N1—Pr1130.5 (3)C17—C18—H18120.6
C8—N1—Pr1112.5 (2)C18—C19—C14121.8 (5)
C26—N2—C21117.1 (4)C18—C19—H19119.1
C26—N2—Pr1129.2 (3)C14—C19—H19119.1
C21—N2—Pr1113.7 (3)O4—C20—C25124.8 (4)
O9—N3—O7122.1 (4)O4—C20—C21114.8 (4)
O9—N3—O8121.1 (4)C25—C20—C21120.4 (4)
O7—N3—O8116.8 (4)C22—C21—C20119.1 (4)
C10—C9—C8119.9 (5)C22—C21—N2124.5 (4)
C10—C9—H9120.1C20—C21—N2116.3 (4)
C8—C9—H9120.1C21—C22—C23121.0 (5)
C7—O1—C1111.6 (3)C21—C22—H22119.5
C7—O1—Pr1111.6 (2)C23—C22—H22119.5
C1—O1—Pr1118.0 (2)C24—C23—C22118.9 (5)
C3—O2—C2109.9 (3)C24—C23—H23120.6
C3—O2—Pr1118.4 (3)C22—C23—H23120.6
C2—O2—Pr1118.3 (2)C23—C24—C25121.4 (5)
C5—O3—C4111.2 (3)C23—C24—H24119.3
C5—O3—Pr1115.9 (2)C25—C24—H24119.3
C4—O3—Pr1110.6 (2)C24—C25—C20119.1 (5)
C20—O4—C6118.6 (3)C24—C25—H25120.4
C20—O4—Pr1111.7 (2)C20—C25—H25120.4
C6—O4—Pr1113.2 (2)N2—C26—C27126.7 (4)
C15—O5—Pr1146.5 (3)N2—C26—H26116.6
C28—O6—Pr1144.1 (3)C27—C26—H26116.6
N3—O7—Pr197.3 (3)C32—C27—C28119.7 (4)
N3—O8—Pr197.0 (2)C32—C27—C26117.1 (4)
O1—C1—C2109.2 (4)C28—C27—C26123.2 (4)
O1—C1—H1A109.8O6—C28—C29120.4 (4)
C2—C1—H1A109.8O6—C28—C27122.6 (4)
O1—C1—H1B109.8C29—C28—C27117.1 (4)
C2—C1—H1B109.8C30—C29—C28122.4 (5)
H1A—C1—H1B108.3C30—C29—H29118.8
O2—C2—C1107.2 (4)C28—C29—H29118.8
O2—C2—H2A110.3C29—C30—C31120.1 (5)
C1—C2—H2A110.3C29—C30—H30120.0
O2—C2—H2B110.3C31—C30—H30120.0
C1—C2—H2B110.3C32—C31—C30119.4 (5)
H2A—C2—H2B108.5C32—C31—H31120.3
O2—C3—C4108.8 (4)C30—C31—H31120.3
O2—C3—H3A109.9C31—C32—C27121.3 (5)
C4—C3—H3A109.9C31—C32—H32119.4
O2—C3—H3B109.9C27—C32—H32119.4
C4—C3—H3B109.9Cl1—C33—Cl3110.7 (3)
H3A—C3—H3B108.3Cl1—C33—Cl2110.4 (3)
O3—C4—C3108.0 (4)Cl3—C33—Cl2110.9 (3)
O3—C4—H4A110.1Cl1—C33—H33108.2
C3—C4—H4A110.1Cl3—C33—H33108.2
O3—C4—H4B110.1Cl2—C33—H33108.2

Experimental details

Crystal data
Chemical formula[Pr(C32H30N2O6)(NO3)]·CHCl3
Mr860.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.3454 (14), 20.150 (2), 15.4676 (17)
β (°) 100.585 (2)
V3)3475.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.48 × 0.43 × 0.21
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.498, 0.718
No. of measured, independent and
observed [I > 2σ(I)] reflections
17233, 6118, 4284
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.083, 1.03
No. of reflections6118
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.44, 0.55

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Pr1—O62.269 (3)Pr1—N22.670 (4)
Pr1—O52.278 (3)Pr1—O12.708 (3)
Pr1—N12.646 (3)Pr1—O22.710 (3)
Pr1—O82.649 (3)Pr1—O32.787 (3)
Pr1—O72.649 (3)Pr1—O42.801 (3)
O6—Pr1—N179.26 (11)N1—Pr1—O159.47 (9)
O6—Pr1—O776.36 (11)O1—Pr1—O260.33 (8)
O8—Pr1—O747.81 (10)O2—Pr1—O360.76 (9)
O5—Pr1—N277.19 (11)O5—Pr1—O473.42 (9)
N1—Pr1—N279.07 (10)N2—Pr1—O456.72 (9)
O7—Pr1—N292.76 (10)O3—Pr1—O460.53 (8)
 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (grant Nos. 20771048, 20431010, 20621091 and J0630962) for financial support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.  Google Scholar
First citationDing, X.-S., Yu, T.-Z. & Liu, X. (2007). Hua Xue Tong Bao, 6, 463–466.  Google Scholar
First citationLiu, W.-S., Li, X.-F., Wen, Y.-H. & Tan, M.-Y. (2004). Dalton Trans. pp. 640–644.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSi, J.-M., Wu, Y.-J., Cai, L., Liu, Y.-Z. & Du, B.-S. (1994). J. Inclusion Phenom. Mol. Recognit. Chem. 17, 249–258.  CrossRef CAS Web of Science Google Scholar
First citationWen, Y.-H., Qin, Z. & Liu, W.-S. (2001). J. Radioanal. Nucl. Chem. 250, 285–289.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationYu, T.-Z., Su, W.-M., Li, W.-L. & Hong, Z.-R. (2006). Inorg. Chim. Acta, 359, 2246–2251.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds