organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Bromo­benzyl­­idene)-3,4,5-tri­meth­oxy­benzohydrazide methanol solvate

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: daohanghe@yahoo.com.cn

(Received 8 July 2008; accepted 13 July 2008; online 31 July 2008)

The title compound, C17H17BrN2O4·CH4O, was synthesized by the condensation of 3,4,5-trimethoxy­benzohydrazide and 2-bromo­benzaldehyde. The two aromatic rings are approximately planar, the dihedral angle being 3.08 (9)°. The mol­ecules are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds into chains along the a axis.

Related literature

For related literature, see: Constable & Holmes (1987[Constable, E. C. & Holmes, J. M. (1987). Inorg. Chim. Acta, 126, 195-197.]); Ganjali et al. (2006[Ganjali, M. R., Faridbod, F., Norouzi, P. & Adib, M. (2006). Sens. Actuators B, 120, 119-124.]); Gardner et al. (1991[Gardner, T. S., Weins, R. & Lee, J. (1991). J. Org. Chem. 26, 1514-1530.]); Jing et al. (2006[Jing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4087-o4088.]); Kuriakose et al. (2007[Kuriakose, M., Kurup, M. R. P. & Suresh, E. (2007). Spectrochim. Acta Part A, 66, 898-903.]); Patole et al. (2003[Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51-55.]); Zhou et al. (2005[Zhou, Y. Z., Li, J. F., Tu, S. J. & Zhang, M. (2005). Chin. J. Struct. Chem. 24, 1193-1197.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17BrN2O4·CH4O

  • Mr = 425.28

  • Orthorhombic, P n a 21

  • a = 12.9234 (7) Å

  • b = 4.9159 (3) Å

  • c = 29.3975 (17) Å

  • V = 1867.63 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 173 (2) K

  • 0.36 × 0.35 × 0.33 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.455, Tmax = 0.479

  • 8158 measured reflections

  • 3799 independent reflections

  • 3206 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.04

  • 3799 reflections

  • 240 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1720 Friedel pairs

  • Flack parameter: −0.008 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.88 2.01 2.871 (4) 164
O5—H5⋯O4 0.84 1.96 2.794 (3) 175
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones are acknowledged to possess a diverse range of bioactivities; these include antibacterial, antiviral, antineoplastic, and anti-inflammatory (Constable & Holmes, 1987; Ganjali et al., 2006; Gardner et al., 1991; Patole et al., 2003). In addition, many hydrazones have also been used as ligands because they can readily form stable complexes with most metal ions (Kuriakose et al., 2007; Zhou et al., 2005). We report here the synthesis and crystal structure of the title compound, obtained by the condensation of 3,4,5-trimethoxybenzohydrazide and 2-bromobenzaldehyde.

The asymmetric unit of the title compound comprises one N'-(2-bromobenzylidene)-3,4,5-trimethoxybenzohydrazide and a methanol solvent molecule (Fig. 1). The two aromatic rings are approximately planar, with a dihedral angle of 3.08 (9)°. Similar geometry has been observed in related hydrazone analogues (Jing et al., 2006). The methanol molecules in the crystal structure are linked to N'-(2-bromobenzylidene)-3,4,5-trimethoxybenzohydrazide through intermolecular N—H···O and O—H···O hydrogen bonds into chains along the a axis (Fig. 2).

Related literature top

For related literature, see: Constable & Holmes (1987); Ganjali et al. (2006); Gardner et al. (1991); Jing et al. (2006); Kuriakose et al. (2007); Patole et al. (2003); Zhou et al. (2005).

Experimental top

A mixture of 3,4,5-trimethoxybenzohydrazide (1 mmol) and 2-bromobenzaldehyde (1 mmol) in anhydrous ethanol (10 ml) was refluxed for 2 h. When the solution was cooled to room temperature, some white needles separated out. After filtration, colorless single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with N—H = 0.88 Å, O—H = 0.84 Å, Csp2—H = 0.95 Å, C(methyl)—H = 0.98 Å and Uiso(H) = xUeq(C, N, O), where x = 1.5 for the methyl and hydroxyl groups, x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the two independent molecules in the asymmetric unit of the title compound, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the b axis. The dashed lines represent the hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
N'-(2-Bromobenzylidene)-3,4,5-trimethoxybenzohydrazide methanol solvate top
Crystal data top
C17H17BrN2O4·CH4OF(000) = 872
Mr = 425.28Dx = 1.512 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4139 reflections
a = 12.9234 (7) Åθ = 2.8–26.8°
b = 4.9159 (3) ŵ = 2.23 mm1
c = 29.3975 (17) ÅT = 173 K
V = 1867.63 (19) Å3Block, colorless
Z = 40.36 × 0.35 × 0.33 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3799 independent reflections
Radiation source: fine-focus sealed tube3206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1516
Tmin = 0.455, Tmax = 0.479k = 26
8158 measured reflectionsl = 3437
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + 0.8008P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3799 reflectionsΔρmax = 0.33 e Å3
240 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 1720 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (8)
Crystal data top
C17H17BrN2O4·CH4OV = 1867.63 (19) Å3
Mr = 425.28Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.9234 (7) ŵ = 2.23 mm1
b = 4.9159 (3) ÅT = 173 K
c = 29.3975 (17) Å0.36 × 0.35 × 0.33 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3799 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3206 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.479Rint = 0.027
8158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.33 e Å3
S = 1.04Δρmin = 0.26 e Å3
3799 reflectionsAbsolute structure: Flack (1983), 1720 Friedel pairs
240 parametersAbsolute structure parameter: 0.008 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61656 (2)1.31840 (7)0.659414 (16)0.03707 (11)
C10.5590 (2)0.7908 (6)0.89278 (10)0.0193 (6)
C20.6409 (2)0.9755 (6)0.89566 (11)0.0195 (6)
H20.65931.08310.87010.023*
C30.6953 (2)1.0008 (6)0.93627 (11)0.0207 (7)
C40.6698 (2)0.8389 (6)0.97327 (10)0.0186 (6)
C50.5855 (2)0.6608 (6)0.97056 (11)0.0215 (7)
C60.5308 (2)0.6357 (6)0.93023 (11)0.0211 (7)
H60.47420.51290.92820.025*
C70.4968 (2)0.7557 (6)0.85047 (11)0.0212 (7)
C80.5282 (3)0.9221 (7)0.73624 (12)0.0276 (7)
H80.59620.99520.73770.033*
C90.4707 (3)0.9235 (7)0.69320 (11)0.0254 (7)
C100.4991 (2)1.0835 (6)0.65573 (14)0.0264 (7)
C110.4448 (3)1.0814 (8)0.61551 (12)0.0337 (8)
H110.46571.19550.59110.040*
C120.3603 (3)0.9139 (8)0.61066 (13)0.0362 (9)
H120.32350.90840.58270.043*
C130.3292 (3)0.7520 (8)0.64720 (12)0.0344 (9)
H130.27090.63570.64410.041*
C140.3830 (3)0.7604 (8)0.68790 (14)0.0312 (8)
H140.35980.65300.71270.037*
C150.8028 (3)1.3547 (7)0.90665 (12)0.0254 (7)
H15A0.82761.24780.88070.038*
H15B0.85771.47790.91680.038*
H15C0.74221.46110.89750.038*
C160.7819 (3)0.6441 (7)1.02794 (14)0.0378 (9)
H16A0.74020.47921.02420.057*
H16B0.80030.66601.06010.057*
H16C0.84510.62891.00970.057*
C170.4812 (3)0.3298 (7)1.00811 (13)0.0294 (8)
H17A0.41600.42111.00060.044*
H17B0.47480.24071.03780.044*
H17C0.49680.19320.98480.044*
C180.2740 (4)0.2319 (9)0.78016 (15)0.0461 (11)
H18A0.31830.22810.75310.069*
H18B0.20920.13600.77370.069*
H18C0.30960.14260.80550.069*
N20.4860 (2)0.8218 (6)0.77170 (9)0.0247 (6)
N10.5432 (2)0.8335 (6)0.81116 (9)0.0254 (6)
H1A0.60790.88970.81090.030*
O10.77516 (17)1.1759 (4)0.94291 (7)0.0240 (5)
O20.72395 (17)0.8738 (5)1.01327 (8)0.0247 (5)
O30.56273 (16)0.5255 (5)1.00977 (8)0.0279 (5)
O40.40936 (17)0.6632 (5)0.85149 (8)0.0282 (5)
O50.25214 (18)0.5045 (5)0.79189 (9)0.0319 (6)
H50.29730.56150.81010.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03845 (18)0.03817 (18)0.03459 (19)0.00184 (16)0.0079 (2)0.0056 (2)
C10.0208 (15)0.0234 (15)0.0137 (16)0.0046 (13)0.0037 (12)0.0005 (12)
C20.0212 (15)0.0209 (15)0.0165 (16)0.0034 (13)0.0004 (12)0.0008 (12)
C30.0181 (14)0.0212 (16)0.0228 (17)0.0016 (13)0.0009 (13)0.0054 (13)
C40.0209 (15)0.0203 (15)0.0144 (16)0.0027 (13)0.0023 (12)0.0036 (12)
C50.0218 (15)0.0231 (17)0.0195 (17)0.0003 (13)0.0024 (13)0.0030 (13)
C60.0201 (15)0.0238 (16)0.0194 (17)0.0007 (13)0.0051 (12)0.0003 (13)
C70.0206 (15)0.0247 (16)0.0183 (16)0.0010 (13)0.0012 (13)0.0004 (12)
C80.0235 (16)0.0360 (18)0.0232 (18)0.0025 (15)0.0004 (14)0.0030 (15)
C90.0271 (17)0.0318 (17)0.0172 (17)0.0048 (15)0.0029 (13)0.0024 (13)
C100.0313 (15)0.0282 (14)0.0196 (17)0.0088 (12)0.0059 (18)0.0007 (16)
C110.047 (2)0.037 (2)0.0170 (18)0.0092 (18)0.0041 (16)0.0035 (15)
C120.047 (2)0.043 (2)0.0192 (19)0.0102 (19)0.0100 (16)0.0003 (16)
C130.0344 (18)0.042 (2)0.027 (2)0.0003 (16)0.0079 (16)0.0059 (14)
C140.033 (2)0.040 (2)0.021 (2)0.0007 (18)0.0008 (15)0.0053 (14)
C150.0242 (16)0.0260 (18)0.0260 (19)0.0014 (15)0.0021 (14)0.0016 (14)
C160.040 (2)0.036 (2)0.037 (2)0.0072 (19)0.0187 (18)0.0032 (17)
C170.0250 (17)0.0339 (19)0.0294 (19)0.0035 (16)0.0007 (14)0.0083 (16)
C180.057 (3)0.046 (2)0.036 (2)0.011 (2)0.004 (2)0.0082 (19)
N20.0217 (13)0.0366 (16)0.0159 (14)0.0002 (12)0.0058 (11)0.0011 (12)
N10.0185 (13)0.0413 (18)0.0162 (14)0.0031 (13)0.0030 (10)0.0024 (12)
O10.0251 (11)0.0277 (12)0.0193 (12)0.0046 (10)0.0042 (9)0.0012 (9)
O20.0305 (12)0.0285 (12)0.0150 (12)0.0001 (10)0.0068 (10)0.0019 (9)
O30.0277 (12)0.0379 (13)0.0181 (12)0.0087 (11)0.0042 (10)0.0067 (10)
O40.0232 (11)0.0409 (14)0.0205 (13)0.0073 (11)0.0049 (10)0.0038 (10)
O50.0230 (12)0.0402 (14)0.0326 (14)0.0039 (11)0.0045 (11)0.0067 (11)
Geometric parameters (Å, º) top
Br1—C101.911 (3)C12—H120.9500
C1—C61.388 (4)C13—C141.384 (5)
C1—C21.397 (4)C13—H130.9500
C1—C71.491 (4)C14—H140.9500
C2—C31.391 (4)C15—O11.427 (4)
C2—H20.9500C15—H15A0.9800
C3—O11.358 (4)C15—H15B0.9800
C3—C41.388 (4)C15—H15C0.9800
C4—O21.379 (4)C16—O21.422 (4)
C4—C51.400 (5)C16—H16A0.9800
C5—O31.363 (4)C16—H16B0.9800
C5—C61.386 (4)C16—H16C0.9800
C6—H60.9500C17—O31.428 (4)
C7—O41.218 (4)C17—H17A0.9800
C7—N11.357 (4)C17—H17B0.9800
C8—N21.276 (4)C17—H17C0.9800
C8—C91.467 (4)C18—O51.412 (5)
C8—H80.9500C18—H18A0.9800
C9—C141.398 (5)C18—H18B0.9800
C9—C101.402 (5)C18—H18C0.9800
C10—C111.375 (5)N2—N11.377 (4)
C11—C121.375 (6)N1—H1A0.8800
C11—H110.9500O5—H50.8400
C12—C131.396 (5)
C6—C1—C2120.5 (3)C14—C13—H13119.9
C6—C1—C7117.1 (3)C12—C13—H13119.9
C2—C1—C7122.3 (3)C13—C14—C9121.4 (4)
C3—C2—C1119.5 (3)C13—C14—H14119.3
C3—C2—H2120.2C9—C14—H14119.3
C1—C2—H2120.2O1—C15—H15A109.5
O1—C3—C4115.6 (3)O1—C15—H15B109.5
O1—C3—C2124.3 (3)H15A—C15—H15B109.5
C4—C3—C2120.1 (3)O1—C15—H15C109.5
O2—C4—C3118.5 (3)H15A—C15—H15C109.5
O2—C4—C5121.4 (3)H15B—C15—H15C109.5
C3—C4—C5119.9 (3)O2—C16—H16A109.5
O3—C5—C6124.7 (3)O2—C16—H16B109.5
O3—C5—C4115.2 (3)H16A—C16—H16B109.5
C6—C5—C4120.1 (3)O2—C16—H16C109.5
C5—C6—C1119.7 (3)H16A—C16—H16C109.5
C5—C6—H6120.2H16B—C16—H16C109.5
C1—C6—H6120.2O3—C17—H17A109.5
O4—C7—N1122.4 (3)O3—C17—H17B109.5
O4—C7—C1121.5 (3)H17A—C17—H17B109.5
N1—C7—C1116.1 (3)O3—C17—H17C109.5
N2—C8—C9119.3 (3)H17A—C17—H17C109.5
N2—C8—H8120.3H17B—C17—H17C109.5
C9—C8—H8120.3O5—C18—H18A109.5
C14—C9—C10116.5 (3)O5—C18—H18B109.5
C14—C9—C8120.3 (3)H18A—C18—H18B109.5
C10—C9—C8123.2 (3)O5—C18—H18C109.5
C11—C10—C9122.6 (3)H18A—C18—H18C109.5
C11—C10—Br1117.3 (3)H18B—C18—H18C109.5
C9—C10—Br1120.1 (3)C8—N2—N1116.2 (3)
C12—C11—C10119.9 (3)C7—N1—N2117.9 (3)
C12—C11—H11120.0C7—N1—H1A121.1
C10—C11—H11120.0N2—N1—H1A121.1
C11—C12—C13119.4 (3)C3—O1—C15118.2 (2)
C11—C12—H12120.3C4—O2—C16115.3 (2)
C13—C12—H12120.3C5—O3—C17117.4 (3)
C14—C13—C12120.2 (4)C18—O5—H5109.5
C6—C1—C2—C30.9 (4)C14—C9—C10—C110.5 (5)
C7—C1—C2—C3179.4 (3)C8—C9—C10—C11179.6 (3)
C1—C2—C3—O1179.2 (3)C14—C9—C10—Br1179.1 (2)
C1—C2—C3—C41.5 (4)C8—C9—C10—Br10.9 (4)
O1—C3—C4—O22.0 (4)C9—C10—C11—C121.2 (5)
C2—C3—C4—O2178.6 (3)Br1—C10—C11—C12179.2 (3)
O1—C3—C4—C5177.0 (3)C10—C11—C12—C131.5 (5)
C2—C3—C4—C53.6 (4)C11—C12—C13—C140.0 (6)
O2—C4—C5—O30.7 (4)C12—C13—C14—C91.8 (6)
C3—C4—C5—O3175.6 (3)C10—C9—C14—C131.9 (5)
O2—C4—C5—C6178.2 (3)C8—C9—C14—C13178.1 (3)
C3—C4—C5—C63.3 (4)C9—C8—N2—N1178.4 (3)
O3—C5—C6—C1177.8 (3)O4—C7—N1—N24.1 (5)
C4—C5—C6—C11.0 (5)C1—C7—N1—N2175.7 (3)
C2—C1—C6—C51.2 (5)C8—N2—N1—C7173.1 (3)
C7—C1—C6—C5179.7 (3)C4—C3—O1—C15177.9 (3)
C6—C1—C7—O421.3 (4)C2—C3—O1—C152.7 (4)
C2—C1—C7—O4157.2 (3)C3—C4—O2—C16117.3 (3)
C6—C1—C7—N1159.0 (3)C5—C4—O2—C1667.8 (4)
C2—C1—C7—N122.5 (4)C6—C5—O3—C174.7 (5)
N2—C8—C9—C1415.7 (5)C4—C5—O3—C17176.5 (3)
N2—C8—C9—C10164.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.882.012.871 (4)164
O5—H5···O40.841.962.794 (3)175
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC17H17BrN2O4·CH4O
Mr425.28
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)12.9234 (7), 4.9159 (3), 29.3975 (17)
V3)1867.63 (19)
Z4
Radiation typeMo Kα
µ (mm1)2.23
Crystal size (mm)0.36 × 0.35 × 0.33
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.455, 0.479
No. of measured, independent and
observed [I > 2σ(I)] reflections
8158, 3799, 3206
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.04
No. of reflections3799
No. of parameters240
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.26
Absolute structureFlack (1983), 1720 Friedel pairs
Absolute structure parameter0.008 (8)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.882.012.871 (4)164.2
O5—H5···O40.841.962.794 (3)174.8
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

The authors thank the Natural Science Youth Foundation of South China University of Technology for financial assistance (E5050570).

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C. & Holmes, J. M. (1987). Inorg. Chim. Acta, 126, 195–197.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGanjali, M. R., Faridbod, F., Norouzi, P. & Adib, M. (2006). Sens. Actuators B, 120, 119–124.  Web of Science CrossRef CAS Google Scholar
First citationGardner, T. S., Weins, R. & Lee, J. (1991). J. Org. Chem. 26, 1514–1530.  CrossRef Web of Science Google Scholar
First citationJing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4087–o4088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuriakose, M., Kurup, M. R. P. & Suresh, E. (2007). Spectrochim. Acta Part A, 66, 898–903.  CrossRef Google Scholar
First citationPatole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51–55.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Y. Z., Li, J. F., Tu, S. J. & Zhang, M. (2005). Chin. J. Struct. Chem. 24, 1193–1197.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds