organic compounds
N-(2-Furylcarbonyl)piperidine-1-carbothioamide
aDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba, and bGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
*Correspondence e-mail: duque@imre.oc.uh.cu
The title compound, C11H14N2O2S, was synthesized from furoyl isothiocyanate and piperidine in dry acetone. The thiourea group is in the thioamide form. The thiourea group makes a dihedral angle of 53.9 (1)° with the furan carbonyl group. In the molecules are linked by intermolecular N—H⋯O hydrogen bonds, forming one-dimensional chains along the c axis. An intramolecular N—H⋯O hydrogen bond is also present.
Related literature
For general background, see: Aly et al. (2007); Estévez-Hernández et al. (2006, 2007); Koch (2001). For related structures, see: Dago et al. (1987); Plutin et al. (2000); Pérez et al. (2008); Duque et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Enraf–Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808020977/ww2121sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808020977/ww2121Isup2.hkl
The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl choride into furoyl isothiocyanate and then condensing with piperidine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 120–121°C). Elemental analysis (%) for C11H14N2O2S calculated: C 55.46, H 5.88, N 11.76, S 13.45; found: C 55.23, H 5.90, N 11.63, S 13.32.
Data collection: COLLECT (Enraf–Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C11H14N2O2S | F(000) = 1008 |
Mr = 238.3 | Dx = 1.352 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2684 reflections |
a = 31.6377 (15) Å | θ = 2.9–26.4° |
b = 8.6787 (4) Å | µ = 0.26 mm−1 |
c = 8.5308 (3) Å | T = 294 K |
V = 2342.34 (18) Å3 | Prism, colourless |
Z = 8 | 0.15 × 0.13 × 0.06 mm |
Nonius KappaCCD diffractometer | Rint = 0.039 |
CCD rotation images, thick slices scans | θmax = 26.4°, θmin = 3.4° |
4308 measured reflections | h = −39→39 |
2387 independent reflections | k = −10→10 |
1550 reflections with I > 2σ(I) | l = −10→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.067 | w = 1/[σ2(Fo2) + (0.1017P)2 + 1.0533P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.205 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.35 e Å−3 |
2387 reflections | Δρmin = −0.35 e Å−3 |
145 parameters |
C11H14N2O2S | V = 2342.34 (18) Å3 |
Mr = 238.3 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 31.6377 (15) Å | µ = 0.26 mm−1 |
b = 8.6787 (4) Å | T = 294 K |
c = 8.5308 (3) Å | 0.15 × 0.13 × 0.06 mm |
Nonius KappaCCD diffractometer | 1550 reflections with I > 2σ(I) |
4308 measured reflections | Rint = 0.039 |
2387 independent reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.205 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.35 e Å−3 |
2387 reflections | Δρmin = −0.35 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.05964 (9) | 0.3587 (4) | 0.2251 (4) | 0.0455 (7) | |
C2 | 0.13205 (9) | 0.2817 (4) | 0.2882 (3) | 0.0456 (8) | |
C3 | 0.01610 (9) | 0.3667 (3) | 0.2812 (3) | 0.0442 (7) | |
C4 | −0.01794 (10) | 0.4368 (4) | 0.2179 (4) | 0.0561 (9) | |
H4 | −0.0191 | 0.4904 | 0.1237 | 0.067* | |
C5 | −0.05161 (11) | 0.4118 (4) | 0.3246 (5) | 0.0678 (11) | |
H5 | −0.0792 | 0.4468 | 0.314 | 0.081* | |
C6 | −0.03631 (12) | 0.3293 (5) | 0.4421 (5) | 0.0776 (12) | |
H6 | −0.0521 | 0.2957 | 0.5275 | 0.093* | |
C7 | 0.13358 (12) | 0.5686 (4) | 0.2859 (5) | 0.0627 (10) | |
H7A | 0.1051 | 0.5591 | 0.3268 | 0.075* | |
H7B | 0.1321 | 0.6226 | 0.1865 | 0.075* | |
C8 | 0.16045 (13) | 0.6593 (4) | 0.3996 (5) | 0.0743 (11) | |
H8A | 0.1586 | 0.6123 | 0.5026 | 0.089* | |
H8B | 0.1495 | 0.7633 | 0.4075 | 0.089* | |
C9 | 0.20640 (14) | 0.6656 (5) | 0.3497 (6) | 0.0890 (13) | |
H9A | 0.209 | 0.7254 | 0.2541 | 0.107* | |
H9B | 0.223 | 0.7157 | 0.4305 | 0.107* | |
C10 | 0.22286 (12) | 0.5045 (5) | 0.3226 (6) | 0.0849 (13) | |
H10A | 0.2515 | 0.5098 | 0.2827 | 0.102* | |
H10B | 0.2235 | 0.4492 | 0.4213 | 0.102* | |
C11 | 0.19565 (11) | 0.4186 (5) | 0.2081 (5) | 0.0703 (11) | |
H11A | 0.197 | 0.4688 | 0.1065 | 0.084* | |
H11B | 0.2062 | 0.3143 | 0.1962 | 0.084* | |
N1 | 0.08854 (7) | 0.2942 (3) | 0.3243 (3) | 0.0458 (7) | |
H1 | 0.0799 | 0.2594 | 0.4131 | 0.055* | |
N2 | 0.15184 (8) | 0.4140 (3) | 0.2619 (3) | 0.0527 (7) | |
O1 | 0.06909 (7) | 0.4111 (3) | 0.0970 (2) | 0.0569 (7) | |
O2 | 0.00546 (7) | 0.3001 (3) | 0.4214 (3) | 0.0651 (7) | |
S1 | 0.15400 (3) | 0.10814 (10) | 0.28587 (13) | 0.0661 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0424 (16) | 0.0478 (17) | 0.0462 (19) | 0.0006 (13) | −0.0034 (13) | −0.0070 (15) |
C2 | 0.0397 (15) | 0.056 (2) | 0.0412 (17) | −0.0007 (14) | −0.0028 (13) | −0.0054 (15) |
C3 | 0.0435 (16) | 0.0484 (17) | 0.0406 (16) | 0.0015 (13) | −0.0001 (13) | 0.0006 (14) |
C4 | 0.0547 (19) | 0.0541 (19) | 0.060 (2) | 0.0076 (16) | −0.0086 (16) | 0.0046 (17) |
C5 | 0.0423 (18) | 0.070 (2) | 0.091 (3) | 0.0139 (17) | 0.0037 (18) | −0.004 (2) |
C6 | 0.050 (2) | 0.092 (3) | 0.090 (3) | 0.018 (2) | 0.023 (2) | 0.017 (2) |
C7 | 0.057 (2) | 0.049 (2) | 0.082 (3) | 0.0016 (16) | 0.0006 (18) | 0.0000 (18) |
C8 | 0.089 (3) | 0.048 (2) | 0.086 (3) | −0.0092 (19) | −0.006 (2) | −0.005 (2) |
C9 | 0.082 (3) | 0.074 (3) | 0.111 (3) | −0.027 (2) | −0.018 (3) | 0.002 (3) |
C10 | 0.053 (2) | 0.084 (3) | 0.118 (4) | −0.017 (2) | −0.011 (2) | 0.009 (3) |
C11 | 0.0438 (19) | 0.079 (3) | 0.088 (3) | −0.0093 (18) | 0.0112 (18) | −0.006 (2) |
N1 | 0.0374 (13) | 0.0569 (17) | 0.0430 (14) | 0.0020 (11) | 0.0016 (10) | 0.0006 (12) |
N2 | 0.0419 (15) | 0.0509 (16) | 0.0655 (18) | −0.0043 (12) | 0.0023 (12) | −0.0071 (13) |
O1 | 0.0537 (13) | 0.0760 (17) | 0.0411 (13) | −0.0015 (11) | 0.0017 (10) | 0.0051 (11) |
O2 | 0.0520 (13) | 0.0813 (18) | 0.0619 (15) | 0.0160 (12) | 0.0121 (11) | 0.0164 (13) |
S1 | 0.0485 (5) | 0.0536 (6) | 0.0962 (8) | 0.0069 (4) | −0.0001 (4) | −0.0080 (5) |
C1—O1 | 1.221 (4) | C7—H7A | 0.97 |
C1—N1 | 1.366 (4) | C7—H7B | 0.97 |
C1—C3 | 1.460 (4) | C8—C9 | 1.516 (6) |
C2—N2 | 1.327 (4) | C8—H8A | 0.97 |
C2—N1 | 1.415 (4) | C8—H8B | 0.97 |
C2—S1 | 1.659 (3) | C9—C10 | 1.510 (7) |
C3—C4 | 1.349 (4) | C9—H9A | 0.97 |
C3—O2 | 1.371 (4) | C9—H9B | 0.97 |
C4—C5 | 1.418 (5) | C10—C11 | 1.500 (5) |
C4—H4 | 0.93 | C10—H10A | 0.97 |
C5—C6 | 1.323 (5) | C10—H10B | 0.97 |
C5—H5 | 0.93 | C11—N2 | 1.461 (4) |
C6—O2 | 1.357 (4) | C11—H11A | 0.97 |
C6—H6 | 0.93 | C11—H11B | 0.97 |
C7—N2 | 1.475 (4) | N1—H1 | 0.86 |
C7—C8 | 1.511 (5) | ||
O1—C1—N1 | 122.9 (3) | C9—C8—H8B | 109.2 |
O1—C1—C3 | 120.4 (3) | H8A—C8—H8B | 107.9 |
N1—C1—C3 | 116.6 (3) | C10—C9—C8 | 109.9 (3) |
N2—C2—N1 | 115.5 (3) | C10—C9—H9A | 109.7 |
N2—C2—S1 | 125.9 (2) | C8—C9—H9A | 109.7 |
N1—C2—S1 | 118.6 (2) | C10—C9—H9B | 109.7 |
C4—C3—O2 | 110.1 (3) | C8—C9—H9B | 109.7 |
C4—C3—C1 | 130.1 (3) | H9A—C9—H9B | 108.2 |
O2—C3—C1 | 119.8 (3) | C11—C10—C9 | 111.2 (3) |
C3—C4—C5 | 105.9 (3) | C11—C10—H10A | 109.4 |
C3—C4—H4 | 127 | C9—C10—H10A | 109.4 |
C5—C4—H4 | 127 | C11—C10—H10B | 109.4 |
C6—C5—C4 | 107.1 (3) | C9—C10—H10B | 109.4 |
C6—C5—H5 | 126.5 | H10A—C10—H10B | 108 |
C4—C5—H5 | 126.5 | N2—C11—C10 | 110.7 (3) |
C5—C6—O2 | 111.0 (3) | N2—C11—H11A | 109.5 |
C5—C6—H6 | 124.5 | C10—C11—H11A | 109.5 |
O2—C6—H6 | 124.5 | N2—C11—H11B | 109.5 |
N2—C7—C8 | 110.0 (3) | C10—C11—H11B | 109.5 |
N2—C7—H7A | 109.7 | H11A—C11—H11B | 108.1 |
C8—C7—H7A | 109.7 | C1—N1—C2 | 123.2 (3) |
N2—C7—H7B | 109.7 | C1—N1—H1 | 118.4 |
C8—C7—H7B | 109.7 | C2—N1—H1 | 118.4 |
H7A—C7—H7B | 108.2 | C2—N2—C11 | 121.6 (3) |
C7—C8—C9 | 112.2 (4) | C2—N2—C7 | 125.4 (3) |
C7—C8—H8A | 109.2 | C11—N2—C7 | 113.0 (3) |
C9—C8—H8A | 109.2 | C6—O2—C3 | 105.9 (3) |
C7—C8—H8B | 109.2 | ||
O1—C1—C3—C4 | −5.9 (5) | N2—C2—N1—C1 | 59.9 (4) |
N1—C1—C3—C4 | 172.5 (3) | S1—C2—N1—C1 | −121.4 (3) |
O1—C1—C3—O2 | 176.5 (3) | N1—C2—N2—C11 | −173.8 (3) |
N1—C1—C3—O2 | −5.2 (4) | S1—C2—N2—C11 | 7.6 (5) |
O2—C3—C4—C5 | −0.2 (4) | N1—C2—N2—C7 | 7.8 (4) |
C1—C3—C4—C5 | −178.0 (3) | S1—C2—N2—C7 | −170.8 (3) |
C3—C4—C5—C6 | −0.5 (5) | C10—C11—N2—C2 | −120.6 (4) |
C4—C5—C6—O2 | 1.0 (5) | C10—C11—N2—C7 | 58.1 (4) |
N2—C7—C8—C9 | 54.0 (5) | C8—C7—N2—C2 | 122.3 (4) |
C7—C8—C9—C10 | −53.7 (5) | C8—C7—N2—C11 | −56.3 (4) |
C8—C9—C10—C11 | 54.5 (5) | C5—C6—O2—C3 | −1.1 (5) |
C9—C10—C11—N2 | −56.8 (5) | C4—C3—O2—C6 | 0.8 (4) |
O1—C1—N1—C2 | −0.1 (5) | C1—C3—O2—C6 | 178.8 (3) |
C3—C1—N1—C2 | −178.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.38 | 2.756 (3) | 107 |
N1—H1···O1i | 0.86 | 2.18 | 2.994 (4) | 157 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H14N2O2S |
Mr | 238.3 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 294 |
a, b, c (Å) | 31.6377 (15), 8.6787 (4), 8.5308 (3) |
V (Å3) | 2342.34 (18) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.15 × 0.13 × 0.06 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4308, 2387, 1550 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.205, 1.11 |
No. of reflections | 2387 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.35 |
Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.38 | 2.756 (3) | 107 |
N1—H1···O1i | 0.86 | 2.18 | 2.994 (4) | 157 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from the Brazilian agency CNPq.
References
Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93. CrossRef CAS Google Scholar
Dago, A., Simonov, M. A., Pobedimskaya, E. A., Martin, A. & Macías, A. (1987). Kristallografiya, 32, 1024–1026. CAS Google Scholar
Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068. Web of Science CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (2000). COLLECT. Enraf–Nonius BV, Delft, The Netherlands. Google Scholar
Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2007). Sens. Actuators B, 123, 488–494. Google Scholar
Estévez-Hernández, O., Otazo-Sánchez, E., Hidalgo-Hidalgo de Cisneros, J. L., Naranjo-Rodríguez, I. & Reguera, E. (2006). Spectrochim. Acta A, 64, 961–971. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488. Web of Science CrossRef CAS Google Scholar
Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, o695–695. Web of Science CSD CrossRef IUCr Journals Google Scholar
Plutin, A. M., Marquez, H., Ochoa, E., Morales, M., Sosa, M., Moran, L., Rodíguez, Y., Suarez, M., Martín, N. & Seoane, C. (2000). Tetrahedron, 56, 1533–1539. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea and its derivatives form a versatile family of ligands that are suitable to form complexes with ions of transition and post-transition metal through the S atom (Koch et al., 2001; Aly et al., 2007). The title compound shows outstanding complexation properties (Estévez-Hernández et al., 2006). The potential applications of this class of ligands as ionophores or chemical modifiers in amperometric sensors (Estévez-Hernández et al., 2007) have stimulated our interest in their crystal structure. The title compound crystallizes in the thioamide form. The main bond lengths and torsion angles are within the ranges obtained for similar compounds (Dago et al., 1987; Plutin et al., 2000). All the C–N bonds of thiourea fragment C1–N1, C2–N1 and C2–N2 (Table1) are in the range 1.415 (4)–1.327 (4) Å, intermediate between those expected for single and double C–N bonds (1.47 and 1.27 Å respectively). These results can be explained by the existence of resonance in this part of molecule (Pérez et al., 2008; Duque et al., 2008). The central thiourea fragment (N1—C2—S1—N2) makes dihedral angle of 53.9 (1)° with the furan carbonyl (C1—C3—C4—C5—C6—O2) group. The trans-cis geometry in the thiourea moiety is stabilized by the N1–H1···O2 intramolecular hydrogen bond (Fig.1 and Table 2). In the crystal structure symmetry related molecules are linked by N1–H1···O1 intermolecular hydrogen bonds to form one-dimensional chains along c axis (Figs. 2 and Table 2).