organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Furylcarbon­yl)piperidine-1-carbo­thio­amide

aDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba, and bGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
*Correspondence e-mail: duque@imre.oc.uh.cu

(Received 9 May 2008; accepted 7 July 2008; online 12 July 2008)

The title compound, C11H14N2O2S, was synthesized from furoyl isothio­cyanate and piperidine in dry acetone. The thio­urea group is in the thio­amide form. The thio­urea group makes a dihedral angle of 53.9 (1)° with the furan carbonyl group. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming one-dimensional chains along the c axis. An intramolecular N—H⋯O hydrogen bond is also present.

Related literature

For general background, see: Aly et al. (2007[Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73-93.]); Estévez-Hernández et al. (2006[Estévez-Hernández, O., Otazo-Sánchez, E., Hidalgo-Hidalgo de Cisneros, J. L., Naranjo-Rodríguez, I. & Reguera, E. (2006). Spectrochim. Acta A, 64, 961-971.], 2007[Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2007). Sens. Actuators B, 123, 488-494.]); Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]). For related structures, see: Dago et al. (1987[Dago, A., Simonov, M. A., Pobedimskaya, E. A., Martin, A. & Macías, A. (1987). Kristallografiya, 32, 1024-1026.]); Plutin et al. (2000[Plutin, A. M., Marquez, H., Ochoa, E., Morales, M., Sosa, M., Moran, L., Rodíguez, Y., Suarez, M., Martín, N. & Seoane, C. (2000). Tetrahedron, 56, 1533-1539.]); Pérez et al. (2008[Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, o695-695.]); Duque et al. (2008[Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.]). For the synthesis, see: Otazo-Sánchez et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O2S

  • Mr = 238.3

  • Orthorhombic, P b c a

  • a = 31.6377 (15) Å

  • b = 8.6787 (4) Å

  • c = 8.5308 (3) Å

  • V = 2342.34 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 K

  • 0.15 × 0.13 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 4308 measured reflections

  • 2387 independent reflections

  • 1550 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.205

  • S = 1.10

  • 2387 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.38 2.756 (3) 107
N1—H1⋯O1i 0.86 2.18 2.994 (4) 157
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Enraf–Nonius, 2000[Enraf-Nonius (2000). COLLECT. Enraf-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiourea and its derivatives form a versatile family of ligands that are suitable to form complexes with ions of transition and post-transition metal through the S atom (Koch et al., 2001; Aly et al., 2007). The title compound shows outstanding complexation properties (Estévez-Hernández et al., 2006). The potential applications of this class of ligands as ionophores or chemical modifiers in amperometric sensors (Estévez-Hernández et al., 2007) have stimulated our interest in their crystal structure. The title compound crystallizes in the thioamide form. The main bond lengths and torsion angles are within the ranges obtained for similar compounds (Dago et al., 1987; Plutin et al., 2000). All the C–N bonds of thiourea fragment C1–N1, C2–N1 and C2–N2 (Table1) are in the range 1.415 (4)–1.327 (4) Å, intermediate between those expected for single and double C–N bonds (1.47 and 1.27 Å respectively). These results can be explained by the existence of resonance in this part of molecule (Pérez et al., 2008; Duque et al., 2008). The central thiourea fragment (N1—C2—S1—N2) makes dihedral angle of 53.9 (1)° with the furan carbonyl (C1—C3—C4—C5—C6—O2) group. The trans-cis geometry in the thiourea moiety is stabilized by the N1–H1···O2 intramolecular hydrogen bond (Fig.1 and Table 2). In the crystal structure symmetry related molecules are linked by N1–H1···O1 intermolecular hydrogen bonds to form one-dimensional chains along c axis (Figs. 2 and Table 2).

Related literature top

For general background, see: Aly et al. (2007); Estévez-Hernández et al. (2006, 2007); Koch (2001). For related structures, see: Dago et al. (1987); Plutin et al. (2000); Pérez et al. (2008); Duque et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).

Experimental top

The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl choride into furoyl isothiocyanate and then condensing with piperidine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 120–121°C). Elemental analysis (%) for C11H14N2O2S calculated: C 55.46, H 5.88, N 11.76, S 13.45; found: C 55.23, H 5.90, N 11.63, S 13.32.

Refinement top

All H atoms were refined with Uiso(H)=1.2Ueq(C/N).

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound (50% probability displacement ellipsoids). Intramolecular Hydrogen bonds (N1–H1···O2) are shown as dashed lines.
[Figure 2] Fig. 2. View of the crystal packing of the title compound projected down the b axis. Intermolecular hydrogen bonds (N1–H1···O1) form one-dimensional chains along c axis. The hydrogen bonds are shown as dotted lines.
N-(2-Furylcarbonyl)piperidine-1-carbothioamide top
Crystal data top
C11H14N2O2SF(000) = 1008
Mr = 238.3Dx = 1.352 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2684 reflections
a = 31.6377 (15) Åθ = 2.9–26.4°
b = 8.6787 (4) ŵ = 0.26 mm1
c = 8.5308 (3) ÅT = 294 K
V = 2342.34 (18) Å3Prism, colourless
Z = 80.15 × 0.13 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.039
CCD rotation images, thick slices scansθmax = 26.4°, θmin = 3.4°
4308 measured reflectionsh = 3939
2387 independent reflectionsk = 1010
1550 reflections with I > 2σ(I)l = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.1017P)2 + 1.0533P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.205(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.35 e Å3
2387 reflectionsΔρmin = 0.35 e Å3
145 parameters
Crystal data top
C11H14N2O2SV = 2342.34 (18) Å3
Mr = 238.3Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 31.6377 (15) ŵ = 0.26 mm1
b = 8.6787 (4) ÅT = 294 K
c = 8.5308 (3) Å0.15 × 0.13 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
1550 reflections with I > 2σ(I)
4308 measured reflectionsRint = 0.039
2387 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.11Δρmax = 0.35 e Å3
2387 reflectionsΔρmin = 0.35 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05964 (9)0.3587 (4)0.2251 (4)0.0455 (7)
C20.13205 (9)0.2817 (4)0.2882 (3)0.0456 (8)
C30.01610 (9)0.3667 (3)0.2812 (3)0.0442 (7)
C40.01794 (10)0.4368 (4)0.2179 (4)0.0561 (9)
H40.01910.49040.12370.067*
C50.05161 (11)0.4118 (4)0.3246 (5)0.0678 (11)
H50.07920.44680.3140.081*
C60.03631 (12)0.3293 (5)0.4421 (5)0.0776 (12)
H60.05210.29570.52750.093*
C70.13358 (12)0.5686 (4)0.2859 (5)0.0627 (10)
H7A0.10510.55910.32680.075*
H7B0.13210.62260.18650.075*
C80.16045 (13)0.6593 (4)0.3996 (5)0.0743 (11)
H8A0.15860.61230.50260.089*
H8B0.14950.76330.40750.089*
C90.20640 (14)0.6656 (5)0.3497 (6)0.0890 (13)
H9A0.2090.72540.25410.107*
H9B0.2230.71570.43050.107*
C100.22286 (12)0.5045 (5)0.3226 (6)0.0849 (13)
H10A0.25150.50980.28270.102*
H10B0.22350.44920.42130.102*
C110.19565 (11)0.4186 (5)0.2081 (5)0.0703 (11)
H11A0.1970.46880.10650.084*
H11B0.20620.31430.19620.084*
N10.08854 (7)0.2942 (3)0.3243 (3)0.0458 (7)
H10.07990.25940.41310.055*
N20.15184 (8)0.4140 (3)0.2619 (3)0.0527 (7)
O10.06909 (7)0.4111 (3)0.0970 (2)0.0569 (7)
O20.00546 (7)0.3001 (3)0.4214 (3)0.0651 (7)
S10.15400 (3)0.10814 (10)0.28587 (13)0.0661 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0424 (16)0.0478 (17)0.0462 (19)0.0006 (13)0.0034 (13)0.0070 (15)
C20.0397 (15)0.056 (2)0.0412 (17)0.0007 (14)0.0028 (13)0.0054 (15)
C30.0435 (16)0.0484 (17)0.0406 (16)0.0015 (13)0.0001 (13)0.0006 (14)
C40.0547 (19)0.0541 (19)0.060 (2)0.0076 (16)0.0086 (16)0.0046 (17)
C50.0423 (18)0.070 (2)0.091 (3)0.0139 (17)0.0037 (18)0.004 (2)
C60.050 (2)0.092 (3)0.090 (3)0.018 (2)0.023 (2)0.017 (2)
C70.057 (2)0.049 (2)0.082 (3)0.0016 (16)0.0006 (18)0.0000 (18)
C80.089 (3)0.048 (2)0.086 (3)0.0092 (19)0.006 (2)0.005 (2)
C90.082 (3)0.074 (3)0.111 (3)0.027 (2)0.018 (3)0.002 (3)
C100.053 (2)0.084 (3)0.118 (4)0.017 (2)0.011 (2)0.009 (3)
C110.0438 (19)0.079 (3)0.088 (3)0.0093 (18)0.0112 (18)0.006 (2)
N10.0374 (13)0.0569 (17)0.0430 (14)0.0020 (11)0.0016 (10)0.0006 (12)
N20.0419 (15)0.0509 (16)0.0655 (18)0.0043 (12)0.0023 (12)0.0071 (13)
O10.0537 (13)0.0760 (17)0.0411 (13)0.0015 (11)0.0017 (10)0.0051 (11)
O20.0520 (13)0.0813 (18)0.0619 (15)0.0160 (12)0.0121 (11)0.0164 (13)
S10.0485 (5)0.0536 (6)0.0962 (8)0.0069 (4)0.0001 (4)0.0080 (5)
Geometric parameters (Å, º) top
C1—O11.221 (4)C7—H7A0.97
C1—N11.366 (4)C7—H7B0.97
C1—C31.460 (4)C8—C91.516 (6)
C2—N21.327 (4)C8—H8A0.97
C2—N11.415 (4)C8—H8B0.97
C2—S11.659 (3)C9—C101.510 (7)
C3—C41.349 (4)C9—H9A0.97
C3—O21.371 (4)C9—H9B0.97
C4—C51.418 (5)C10—C111.500 (5)
C4—H40.93C10—H10A0.97
C5—C61.323 (5)C10—H10B0.97
C5—H50.93C11—N21.461 (4)
C6—O21.357 (4)C11—H11A0.97
C6—H60.93C11—H11B0.97
C7—N21.475 (4)N1—H10.86
C7—C81.511 (5)
O1—C1—N1122.9 (3)C9—C8—H8B109.2
O1—C1—C3120.4 (3)H8A—C8—H8B107.9
N1—C1—C3116.6 (3)C10—C9—C8109.9 (3)
N2—C2—N1115.5 (3)C10—C9—H9A109.7
N2—C2—S1125.9 (2)C8—C9—H9A109.7
N1—C2—S1118.6 (2)C10—C9—H9B109.7
C4—C3—O2110.1 (3)C8—C9—H9B109.7
C4—C3—C1130.1 (3)H9A—C9—H9B108.2
O2—C3—C1119.8 (3)C11—C10—C9111.2 (3)
C3—C4—C5105.9 (3)C11—C10—H10A109.4
C3—C4—H4127C9—C10—H10A109.4
C5—C4—H4127C11—C10—H10B109.4
C6—C5—C4107.1 (3)C9—C10—H10B109.4
C6—C5—H5126.5H10A—C10—H10B108
C4—C5—H5126.5N2—C11—C10110.7 (3)
C5—C6—O2111.0 (3)N2—C11—H11A109.5
C5—C6—H6124.5C10—C11—H11A109.5
O2—C6—H6124.5N2—C11—H11B109.5
N2—C7—C8110.0 (3)C10—C11—H11B109.5
N2—C7—H7A109.7H11A—C11—H11B108.1
C8—C7—H7A109.7C1—N1—C2123.2 (3)
N2—C7—H7B109.7C1—N1—H1118.4
C8—C7—H7B109.7C2—N1—H1118.4
H7A—C7—H7B108.2C2—N2—C11121.6 (3)
C7—C8—C9112.2 (4)C2—N2—C7125.4 (3)
C7—C8—H8A109.2C11—N2—C7113.0 (3)
C9—C8—H8A109.2C6—O2—C3105.9 (3)
C7—C8—H8B109.2
O1—C1—C3—C45.9 (5)N2—C2—N1—C159.9 (4)
N1—C1—C3—C4172.5 (3)S1—C2—N1—C1121.4 (3)
O1—C1—C3—O2176.5 (3)N1—C2—N2—C11173.8 (3)
N1—C1—C3—O25.2 (4)S1—C2—N2—C117.6 (5)
O2—C3—C4—C50.2 (4)N1—C2—N2—C77.8 (4)
C1—C3—C4—C5178.0 (3)S1—C2—N2—C7170.8 (3)
C3—C4—C5—C60.5 (5)C10—C11—N2—C2120.6 (4)
C4—C5—C6—O21.0 (5)C10—C11—N2—C758.1 (4)
N2—C7—C8—C954.0 (5)C8—C7—N2—C2122.3 (4)
C7—C8—C9—C1053.7 (5)C8—C7—N2—C1156.3 (4)
C8—C9—C10—C1154.5 (5)C5—C6—O2—C31.1 (5)
C9—C10—C11—N256.8 (5)C4—C3—O2—C60.8 (4)
O1—C1—N1—C20.1 (5)C1—C3—O2—C6178.8 (3)
C3—C1—N1—C2178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.382.756 (3)107
N1—H1···O1i0.862.182.994 (4)157
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14N2O2S
Mr238.3
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)31.6377 (15), 8.6787 (4), 8.5308 (3)
V3)2342.34 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.15 × 0.13 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4308, 2387, 1550
Rint0.039
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.205, 1.11
No. of reflections2387
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.35

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C1—N11.366 (4)C2—N11.415 (4)
C2—N21.327 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.382.756 (3)107
N1—H1···O1i0.862.182.994 (4)157
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from the Brazilian agency CNPq.

References

First citationAly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.  CrossRef CAS Google Scholar
First citationDago, A., Simonov, M. A., Pobedimskaya, E. A., Martin, A. & Macías, A. (1987). Kristallografiya, 32, 1024–1026.  CAS Google Scholar
First citationDuque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (2000). COLLECT. Enraf–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationEstévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2007). Sens. Actuators B, 123, 488–494.  Google Scholar
First citationEstévez-Hernández, O., Otazo-Sánchez, E., Hidalgo-Hidalgo de Cisneros, J. L., Naranjo-Rodríguez, I. & Reguera, E. (2006). Spectrochim. Acta A, 64, 961–971.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationOtazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, o695–695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPlutin, A. M., Marquez, H., Ochoa, E., Morales, M., Sosa, M., Moran, L., Rodíguez, Y., Suarez, M., Martín, N. & Seoane, C. (2000). Tetrahedron, 56, 1533–1539.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds