organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­bromo-1,1′-[ethyl­ene­dioxy­bis­(nitrilo­methyl­­idyne)]di­benzene

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bDepartment of Biochemical Engineering, Anhui University of Technology and Science, Wuhu 241000, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 2 June 2008; accepted 4 July 2008; online 31 July 2008)

In the centrosymmetric title compound, C16H14Br2N2O2, the intra­molecular interplanar distance between the parallel benzene rings is 1.305 (3) Å, while the inter­molecular interplanar distance (between neighbouring mol­ecules) is 3.463 (3) Å, exhibiting obvious strong inter­molecular ππ stacking inter­actions.

Related literature

For related literature, see: Akine et al. (2006[Akine, S., Dong, W. K. & Nabeshima, T. (2006). Inorg. Chem. 45, 4677-4684.]); Atwood & Harvey (2001[Atwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37-52.]); Dong & Duan (2008[Dong, W. K. & Duan, J. G. (2008). J. Coord. Chem. 61, 781-788.]); Dong et al. (2007[Dong, W. K., Chen, X., Wang, S. J., He, X. N., Wu, H. L. & Yu, T. Z. (2007). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 37, 229-233.]); Dong, Duan et al. (2008[Dong, W. K., Duan, J. G., Chai, L. Q., Liu, G. L. & Wu, H. L. (2008). J. Coord. Chem. 61, 1306-1315.]); Dong, Shi et al. (2008[Dong, W. K., Shi, J. Y., Zhong, J. K., Tian, Y. Q. & Duan, J. G. (2008). Chin. J. Inorg. Chem. 28, 10-14.]); Katsuki (1995[Katsuki, T. (1995). Coord. Chem. Rev. 140, 189-214.]); Sun et al. (2004[Sun, S. S., Stern, C. L., Nguyen, S. T. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314-6326.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14Br2N2O2

  • Mr = 426.11

  • Monoclinic, P 21 /n

  • a = 4.5072 (7) Å

  • b = 7.615 (2) Å

  • c = 23.180 (3) Å

  • β = 93.523 (2)°

  • V = 794.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.11 mm−1

  • T = 298 (2) K

  • 0.42 × 0.27 × 0.15 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.223, Tmax = 0.514 (expected range = 0.201–0.464)

  • 3840 measured reflections

  • 1400 independent reflections

  • 1168 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.04

  • 1400 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have played an important role in the development of coordination chemistry as they can readily form stable complexes with most metal ions (Dong & Duan, 2008; Dong, Duan et al., 2008; Dong, Shi et al., 2008; Atwood & Harvey, 2001). These complexes are very interesting in many fields, such as catalysis and enzymatic reactions (Akine et al., 2006), magnetism and molecular architectures (Sun et al., 2004; Katsuki, 1995). However, to the best of our knowledge, the complexes derived from the Schiff base 3,3'-dibromo-1,1'-[ethylenedioxybis(nitriloethylidyne)]dibenzene have never been reported so far. Information on the structure of the Schiff base compound will help us understand the interactions in the molecule so as to further design and synthesize complexes derived from this ligand. As a further investigation on such compounds, we report herein the synthesis and crystal structure of the Schiff base bisoxime compound 3,3'-dibromo-1,1'-[ethylenedioxybis(nitriloethylidyne)]dibenzene, shown in Fig. 1.

The X-ray crystallography reveals the title compound crystallizes in the monoclinic system, space group P2(1)/n with a = 4.5072 (7) Å, b = 7.615 (2) Å, c = 23.180 (3) Å, β = 93.523 (2) ° and Z= 2. The structure of the title compound consists of discrete C16H14Br2N2O2 molecules in which all bond lengths are in normal ranges.

The molecule is disposed about a crystallographic centre of symmetry at the mid-point of the (CH2—CH2) linkage adopting an anti-symmetrized conformation in which two benzaldoxime moieties adopt an extended form. Both intra- and inter-molecular hydrogen bonds are not observed in the title compound. The intramolecular plane-to-plane distance of the benzene rings was found to be 1.305 Å, while that of the intermolecular plane-to-plane distance (between neighbouring molecules) was found to be 3.463 (3) Å, exhibiting obvious strong intermolecular π-π stacking interactions.

Related literature top

For related literature, see: Akine et al. (2006); Atwood & Harvey (2001); Dong & Duan (2008); Dong et al. (2007); Dong, Duan et al. ( 2008); Dong, Shi et al. (2008); Katsuki (1995); Sun et al. (2004).

Experimental top

3,3'-Dibromo-1,1'-[ethylenedioxybis(nitriloethylidyne)]dibenzene was synthesized according to our previous work (Dong et al., 2007). To an ethanol solution (3 ml) of 3-bromo-benzaldehyde (398.7 mg, 2.15 mmol) was added dropwise an ethanol solution (2 ml) of 1,2-bis(aminooxy)ethane (96.2 mg, 1.04 mmol). The mixture solution was stirred at 328 K for 4 h. After cooling to room temperature, the precipitate was filtered off, and washed successively with ethanol and ethanol-hexane mixture (1:4), respectively. The product was dried in vacuo to yield 366.0 mg (Yield, 82.3%) of colorless microcrystals; m.p. 363.5 - 365.5 K. Anal. Calcd. for C16H14Br2N2O2: C, 45.10; H, 3.31; N, 6.57. Found: C, 45.01; H, 3.20; N, 6.43%.

Single crystals were obtained by slow evaporation from a ethanol-acetone mixed solution of the title compound at room temperature.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme [Symmetry codes: -x - 1,-y,-z]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
3,3'-Dibromo-1,1'-[ethylenedioxybis(nitrilomethylidyne)]dibenzene top
Crystal data top
C16H14Br2N2O2F(000) = 420
Mr = 426.11Dx = 1.782 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 4.5072 (7) Åθ = 2.6–26.7°
b = 7.615 (2) ŵ = 5.11 mm1
c = 23.180 (3) ÅT = 298 K
β = 93.523 (2)°Needle-shaped, colorless
V = 794.1 (3) Å30.42 × 0.27 × 0.15 mm
Z = 2
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
1400 independent reflections
Radiation source: fine-focus sealed tube1168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and ϕ scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.223, Tmax = 0.514k = 89
3840 measured reflectionsl = 1927
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3108P]
where P = (Fo2 + 2Fc2)/3
1400 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C16H14Br2N2O2V = 794.1 (3) Å3
Mr = 426.11Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.5072 (7) ŵ = 5.11 mm1
b = 7.615 (2) ÅT = 298 K
c = 23.180 (3) Å0.42 × 0.27 × 0.15 mm
β = 93.523 (2)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
1400 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1168 reflections with I > 2σ(I)
Tmin = 0.223, Tmax = 0.514Rint = 0.043
3840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
1400 reflectionsΔρmin = 0.49 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.56056 (10)0.86904 (5)0.160074 (19)0.0576 (2)
N10.2668 (6)0.2442 (4)0.05861 (13)0.0381 (7)
O10.4716 (6)0.2385 (3)0.00969 (11)0.0422 (6)
C10.6114 (8)0.0710 (5)0.00676 (17)0.0396 (8)
H1A0.77230.07220.02300.048*
H1B0.69520.04520.04340.048*
C20.1591 (8)0.3960 (4)0.06447 (16)0.0373 (8)
H20.21980.48370.03840.045*
C30.0595 (7)0.4362 (4)0.11157 (15)0.0324 (8)
C40.1868 (8)0.6001 (4)0.11401 (15)0.0350 (8)
H40.13370.68270.08570.042*
C50.3929 (8)0.6427 (4)0.15821 (16)0.0369 (8)
C60.4796 (9)0.5227 (5)0.19990 (16)0.0449 (9)
H60.61980.55230.22940.054*
C70.3545 (9)0.3565 (5)0.19728 (18)0.0485 (10)
H70.40980.27410.22560.058*
C80.1504 (9)0.3121 (5)0.15356 (16)0.0412 (9)
H80.07190.19920.15170.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0701 (4)0.0416 (3)0.0597 (3)0.0158 (2)0.0076 (2)0.00700 (18)
N10.0374 (16)0.0381 (17)0.0381 (18)0.0031 (13)0.0038 (13)0.0018 (13)
O10.0438 (14)0.0346 (13)0.0468 (15)0.0078 (11)0.0083 (12)0.0016 (11)
C10.037 (2)0.0389 (19)0.043 (2)0.0032 (16)0.0004 (16)0.0033 (16)
C20.0387 (19)0.0329 (19)0.040 (2)0.0004 (15)0.0022 (16)0.0032 (15)
C30.0310 (18)0.0343 (18)0.0323 (19)0.0008 (14)0.0061 (14)0.0021 (14)
C40.039 (2)0.0322 (18)0.0337 (19)0.0024 (15)0.0026 (15)0.0001 (14)
C50.038 (2)0.0344 (19)0.038 (2)0.0041 (15)0.0036 (16)0.0037 (15)
C60.047 (2)0.049 (2)0.037 (2)0.0008 (18)0.0054 (18)0.0027 (17)
C70.052 (2)0.046 (2)0.047 (2)0.0059 (19)0.0024 (19)0.0120 (18)
C80.048 (2)0.0334 (19)0.043 (2)0.0055 (17)0.0102 (18)0.0027 (16)
Geometric parameters (Å, º) top
Br1—C51.881 (3)C3—C81.399 (5)
N1—C21.258 (4)C4—C51.379 (5)
N1—O11.418 (4)C4—H40.9300
O1—C11.423 (4)C5—C61.369 (5)
C1—C1i1.521 (7)C6—C71.386 (5)
C1—H1A0.9700C6—H60.9300
C1—H1B0.9700C7—C81.368 (5)
C2—C31.457 (5)C7—H70.9300
C2—H20.9300C8—H80.9300
C3—C41.373 (5)
C2—N1—O1110.0 (3)C3—C4—H4119.8
N1—O1—C1109.3 (3)C5—C4—H4119.8
O1—C1—C1i110.5 (4)C6—C5—C4121.1 (3)
O1—C1—H1A109.5C6—C5—Br1119.9 (3)
C1i—C1—H1A109.5C4—C5—Br1119.0 (3)
O1—C1—H1B109.5C5—C6—C7118.8 (3)
C1i—C1—H1B109.5C5—C6—H6120.6
H1A—C1—H1B108.1C7—C6—H6120.6
N1—C2—C3120.8 (3)C8—C7—C6120.7 (4)
N1—C2—H2119.6C8—C7—H7119.6
C3—C2—H2119.6C6—C7—H7119.6
C4—C3—C8118.7 (3)C7—C8—C3120.2 (4)
C4—C3—C2118.9 (3)C7—C8—H8119.9
C8—C3—C2122.3 (3)C3—C8—H8119.9
C3—C4—C5120.4 (3)
C2—N1—O1—C1174.7 (3)C3—C4—C5—Br1179.8 (3)
N1—O1—C1—C1i67.7 (5)C4—C5—C6—C70.5 (6)
O1—N1—C2—C3179.6 (3)Br1—C5—C6—C7179.5 (3)
N1—C2—C3—C4175.5 (3)C5—C6—C7—C80.7 (6)
N1—C2—C3—C82.8 (5)C6—C7—C8—C31.6 (6)
C8—C3—C4—C52.1 (5)C4—C3—C8—C72.3 (6)
C2—C3—C4—C5179.6 (3)C2—C3—C8—C7179.4 (4)
C3—C4—C5—C61.2 (5)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14Br2N2O2
Mr426.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)4.5072 (7), 7.615 (2), 23.180 (3)
β (°) 93.523 (2)
V3)794.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.11
Crystal size (mm)0.42 × 0.27 × 0.15
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.223, 0.514
No. of measured, independent and
observed [I > 2σ(I)] reflections
3840, 1400, 1168
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.04
No. of reflections1400
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.49

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604-01) and the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03-01 A), which are gratefully acknowledged.

References

First citationAkine, S., Dong, W. K. & Nabeshima, T. (2006). Inorg. Chem. 45, 4677–4684.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAtwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37–52.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDong, W. K., Chen, X., Wang, S. J., He, X. N., Wu, H. L. & Yu, T. Z. (2007). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 37, 229–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W. K. & Duan, J. G. (2008). J. Coord. Chem. 61, 781–788.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W. K., Duan, J. G., Chai, L. Q., Liu, G. L. & Wu, H. L. (2008). J. Coord. Chem. 61, 1306–1315.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W. K., Shi, J. Y., Zhong, J. K., Tian, Y. Q. & Duan, J. G. (2008). Chin. J. Inorg. Chem. 28, 10–14.  Google Scholar
First citationKatsuki, T. (1995). Coord. Chem. Rev. 140, 189–214.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, S. S., Stern, C. L., Nguyen, S. T. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314–6326.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds