metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1041-m1042

Di­chlorido(di­methyl­formamide-κO)[1,4,7-tris­­(2-cyano­ethyl)-1,4,7-tri­aza­cyclo­nonane-κ3N1,N4,N7]cobalt(II)

aCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: zzkltl@yahoo.com.cn

(Received 8 June 2008; accepted 13 July 2008; online 19 July 2008)

The title compound, [CoCl2(C15H24N6)(C3H7NO)], crystallizes as a monomeric complex. The coordination environment around the CoII center could be described as a distorted octa­hedron consisting of three N donors from the facially coordinating triaza macrocyclic ligand, one O donor from dimethyl­formamide and two Cl ions. Neutral complex mol­ecules are associated via inter­molecular C—H⋯Cl hydrogen bonds to form two-dimensional layers. C—H⋯O hydrogen bonds are also present.

Related literature

For related literature, see: Scarpellini et al. (2005[Scarpellini, M., Wu, A. J., Kampf, J. W. & Pecoraro, V. L. (2005). Inorg. Chem. 44, 5001-5010.]); Tei et al. (1998[Tei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633-2634.], 2003[Tei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). J. Chem. Soc. Dalton Trans. pp. 304-310.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C15H24N6)(C3H7NO)]

  • Mr = 491.33

  • Monoclinic, P 21 /n

  • a = 9.787 (2) Å

  • b = 19.710 (5) Å

  • c = 12.370 (3) Å

  • β = 97.936 (4)°

  • V = 2363.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 298 (2) K

  • 0.32 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.746, Tmax = 0.800

  • 12542 measured reflections

  • 4630 independent reflections

  • 3320 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.154

  • S = 1.07

  • 4630 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—Co1 2.4382 (14)
Cl2—Co1 2.4096 (13)
Co1—O1 2.114 (3)
Co1—N2 2.194 (4)
Co1—N3 2.200 (4)
Co1—N1 2.232 (4)
O1—Co1—N2 87.78 (12)
O1—Co1—N3 168.01 (13)
N2—Co1—N3 80.93 (13)
O1—Co1—N1 93.00 (13)
N2—Co1—N1 81.07 (14)
N3—Co1—N1 81.30 (13)
O1—Co1—Cl2 90.45 (9)
N2—Co1—Cl2 173.80 (10)
N3—Co1—Cl2 100.34 (10)
N1—Co1—Cl2 93.09 (10)
O1—Co1—Cl1 91.12 (9)
N2—Co1—Cl1 93.38 (10)
N3—Co1—Cl1 93.58 (10)
N1—Co1—Cl1 172.94 (10)
Cl2—Co1—Cl1 92.60 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl2i 0.97 2.75 3.658 (4) 157
C2—H2A⋯O1 0.97 2.58 3.120 (5) 116
C3—H3A⋯Cl2i 0.97 2.81 3.774 (4) 170
C7—H7A⋯Cl2 0.97 2.65 3.419 (4) 136
C10—H10A⋯O1 0.97 2.47 3.149 (6) 127
C10—H10B⋯Cl1 0.97 2.73 3.218 (4) 111
C11—H11A⋯Cl1i 0.97 2.62 3.525 (5) 156
C11—H11B⋯Cl2ii 0.97 2.65 3.502 (5) 147
C13—H13A⋯Cl1 0.97 2.72 3.460 (5) 133
C16—H16⋯Cl2 0.93 2.80 3.325 (5) 117
C17—H17A⋯O1 0.96 2.34 2.741 (7) 105
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Structural investigations on metal complexes with nitrile pendant arm derivatives of 1,4,7-triazacyclononane ([9]aneN3) reveal that these triazamacrocyclic ligands can either be used as building-blocks to assemble multi-dimensional polymeric networks (Tei et al., 1998) or only act as tridentate ligands in the formation of mononuclear complexes with the pendant nitrile groups not involved in metal coordination (Tei et al., 2003). In this paper, we report the crystal structure of the title compound, (I), which is a monomeric CoII complex of a [9]aneN3 derivative containing three pendant 2-cyanoethyl arms.

The molecular structure of (I) (Fig. 1) shows the CoII ion is six-coordinated with three tertiary N donors from the nitrile-functionalized [9]aneN3, one O donor from dimethylformamide ligand and two Cl- ions completing an octahedral geometry. All bond distances and angles around the octahedral CoII ion (Table 1) are generally within the normal ranges (Scarpellini et al., 2005). Three pendant 2-cyanoethyl arms attached to the triazamacrocycle adopt different conformations relative to the macrocycle framework and none of them participates in the coordination to the CoII ion.

The crystal packing of (I) is dominated by intermolecular C—H···Cl hydrogen bonds (Table 2), which link the complex molecules to form two-dimensional hydrogen-bonded layers parallel to (010) plane (Fig. 2).

Related literature top

For related literature, see: Scarpellini et al. (2005); Tei et al. (1998, 2003).

Experimental top

The triazamacrocyclic ligand 1,4,7-tris(2-cyanoethyl)-1,4,7-triazacyclononane was prepared following a literature procedure (Tei et al., 1998). A mixture of the triazamacrocyclic ligand (29 mg, 0.1 mmol) and CoCl2.6H2O (24 mg, 0.1 mmol) in MeOH (10 ml) was stirred under reflux for 2 h. The precipitated pink solid was filtered off and subsequently redissolved in dimethylformamide. Purple single crystals of (I) suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into the dimethylformamide solution. (yield 23 mg, 46.8%) Elemental analysis found: C 44.13; H 6.41; N 19.81%; calculated for C18H31Cl2CoN7O: C 44.00; H 6.36; N 19.96%.

Refinement top

All H atoms were placed in calculated positions and treated in the subsequent refinement as riding atoms, with C—H distances in the range 0.96 - 0.97 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level (arbitrary sphere for H atoms).
[Figure 2] Fig. 2. Partial packing diagram of the title compound, showing the two-dimensional network formed through intermolecular C—H···Cl hydrogen bonds (dashed lines). For clarity, H atoms not involved in hydrogen bonding have been omitted.
Dichlorido(dimethylformamide-κO)[1,4,7-tris(2-cyanoethyl)-1,4,7- triazacyclononane-κ3N1,N4,N7]cobalt(II) top
Crystal data top
[CoCl2(C15H24N6)(C3H7NO)]F(000) = 1028
Mr = 491.33Dx = 1.381 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 915 reflections
a = 9.787 (2) Åθ = 3.2–26.3°
b = 19.710 (5) ŵ = 0.98 mm1
c = 12.370 (3) ÅT = 298 K
β = 97.936 (4)°Block, purple
V = 2363.5 (10) Å30.32 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4630 independent reflections
Radiation source: sealed tube3320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω and ϕ scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1112
Tmin = 0.746, Tmax = 0.800k = 2224
12542 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0683P)2 + 1.5989P]
where P = (Fo2 + 2Fc2)/3
4630 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[CoCl2(C15H24N6)(C3H7NO)]V = 2363.5 (10) Å3
Mr = 491.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.787 (2) ŵ = 0.98 mm1
b = 19.710 (5) ÅT = 298 K
c = 12.370 (3) Å0.32 × 0.26 × 0.24 mm
β = 97.936 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4630 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3320 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.800Rint = 0.052
12542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.07Δρmax = 0.90 e Å3
4630 reflectionsΔρmin = 0.78 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2270 (4)0.8211 (2)0.3872 (3)0.0324 (9)
H1A0.24220.78030.43110.039*
H1B0.22740.85950.43640.039*
C20.3432 (4)0.8292 (2)0.3190 (4)0.0361 (10)
H2A0.33940.87440.28780.043*
H2B0.43080.82450.36580.043*
C30.3572 (5)0.7079 (2)0.2715 (3)0.0379 (10)
H3A0.35390.70750.34950.046*
H3B0.44790.69230.25940.046*
C40.2498 (5)0.6602 (2)0.2164 (4)0.0389 (10)
H4A0.26580.65310.14150.047*
H4B0.25860.61670.25330.047*
C50.0698 (5)0.6922 (2)0.3276 (4)0.0373 (10)
H5A0.15100.68600.38120.045*
H5B0.00490.65640.33810.045*
C60.0060 (4)0.7591 (2)0.3466 (3)0.0303 (9)
H6A0.08400.76170.30280.036*
H6B0.00720.76240.42270.036*
C70.0145 (4)0.8814 (2)0.3205 (3)0.0304 (9)
H7A0.05350.88300.25560.037*
H7B0.07900.91820.31480.037*
C80.0598 (5)0.8954 (3)0.4193 (3)0.0381 (10)
H8A0.10460.93930.40880.046*
H8B0.13180.86170.42010.046*
C90.0240 (6)0.8954 (3)0.5263 (4)0.0466 (12)
C100.4320 (4)0.7942 (3)0.1517 (3)0.0385 (10)
H10A0.39920.83460.11150.046*
H10B0.42950.75720.09970.046*
C110.5839 (5)0.8060 (3)0.2025 (4)0.0446 (12)
H11A0.60460.77770.26690.054*
H11B0.64420.79200.15050.054*
C120.6122 (6)0.8753 (3)0.2321 (5)0.0509 (13)
C130.0065 (5)0.6472 (2)0.1419 (4)0.0413 (11)
H13A0.02780.65330.06830.050*
H13B0.08320.66750.14470.050*
C140.0065 (6)0.5711 (2)0.1614 (5)0.0510 (13)
H14A0.00610.56360.23900.061*
H14B0.09500.55590.12440.061*
C150.0989 (6)0.5305 (3)0.1257 (5)0.0522 (13)
C160.1312 (5)0.9111 (2)0.0171 (4)0.0413 (11)
H160.06710.88500.02740.050*
C170.2703 (6)1.0089 (3)0.0374 (5)0.0666 (17)
H17A0.28680.99340.11160.100*
H17B0.23741.05480.03550.100*
H17C0.35461.00680.00600.100*
C180.1187 (6)0.9877 (3)0.1311 (5)0.0618 (16)
H18A0.04840.95660.16170.093*
H18B0.19240.98800.17490.093*
H18C0.08021.03250.12960.093*
Cl10.17722 (12)0.74778 (6)0.02560 (9)0.0444 (3)
Cl20.11597 (11)0.80786 (5)0.07777 (8)0.0339 (2)
Co10.12259 (6)0.78880 (3)0.14939 (5)0.03397 (19)
N10.0910 (4)0.81680 (18)0.3190 (3)0.0329 (8)
N20.3359 (4)0.77830 (18)0.2297 (3)0.0371 (9)
N30.1097 (4)0.68609 (18)0.2168 (3)0.0319 (8)
N40.0843 (4)0.8938 (2)0.6097 (3)0.0441 (10)
N50.6313 (5)0.9298 (2)0.2543 (4)0.0551 (12)
N60.1858 (5)0.4987 (2)0.0935 (4)0.0492 (10)
N70.1708 (4)0.9672 (2)0.0227 (3)0.0470 (10)
O10.1717 (3)0.88941 (16)0.1096 (2)0.0372 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.030 (2)0.039 (2)0.025 (2)0.0038 (18)0.0088 (16)0.0029 (17)
C20.029 (2)0.042 (2)0.036 (2)0.0020 (18)0.0027 (17)0.0042 (19)
C30.039 (2)0.049 (3)0.024 (2)0.014 (2)0.0005 (18)0.0011 (19)
C40.046 (3)0.035 (2)0.036 (2)0.013 (2)0.006 (2)0.0042 (19)
C50.046 (3)0.035 (2)0.032 (2)0.001 (2)0.0073 (19)0.0015 (19)
C60.025 (2)0.041 (2)0.0255 (19)0.0005 (18)0.0034 (15)0.0055 (17)
C70.025 (2)0.041 (2)0.024 (2)0.0045 (17)0.0016 (16)0.0021 (17)
C80.033 (2)0.050 (3)0.034 (2)0.004 (2)0.0127 (19)0.001 (2)
C90.056 (3)0.055 (3)0.033 (3)0.004 (2)0.018 (2)0.008 (2)
C100.032 (2)0.056 (3)0.026 (2)0.001 (2)0.0023 (17)0.005 (2)
C110.023 (2)0.065 (3)0.045 (3)0.000 (2)0.0059 (19)0.004 (2)
C120.042 (3)0.044 (3)0.069 (4)0.005 (2)0.016 (3)0.001 (3)
C130.040 (3)0.041 (3)0.042 (3)0.002 (2)0.003 (2)0.001 (2)
C140.055 (3)0.042 (3)0.056 (3)0.003 (2)0.007 (2)0.001 (2)
C150.045 (3)0.048 (3)0.061 (3)0.006 (2)0.002 (2)0.010 (3)
C160.047 (3)0.037 (2)0.039 (3)0.002 (2)0.003 (2)0.012 (2)
C170.061 (4)0.070 (4)0.060 (4)0.030 (3)0.023 (3)0.017 (3)
C180.061 (4)0.063 (3)0.062 (4)0.003 (3)0.009 (3)0.038 (3)
Cl10.0365 (6)0.0568 (7)0.0392 (6)0.0011 (5)0.0027 (4)0.0050 (5)
Cl20.0330 (6)0.0353 (5)0.0324 (5)0.0002 (4)0.0005 (4)0.0006 (4)
Co10.0342 (3)0.0336 (3)0.0330 (3)0.0002 (2)0.0007 (2)0.0012 (2)
N10.0301 (19)0.0342 (18)0.0343 (19)0.0050 (15)0.0037 (15)0.0049 (15)
N20.035 (2)0.0317 (19)0.046 (2)0.0012 (15)0.0081 (17)0.0029 (16)
N30.034 (2)0.0365 (18)0.0241 (17)0.0024 (16)0.0012 (14)0.0022 (15)
N40.042 (2)0.052 (2)0.038 (2)0.0023 (19)0.0052 (18)0.0134 (19)
N50.050 (3)0.060 (3)0.060 (3)0.011 (2)0.024 (2)0.011 (2)
N60.047 (3)0.045 (2)0.052 (2)0.006 (2)0.002 (2)0.014 (2)
N70.042 (2)0.055 (2)0.042 (2)0.012 (2)0.0004 (17)0.0153 (19)
O10.0345 (17)0.0401 (17)0.0354 (17)0.0036 (14)0.0015 (13)0.0082 (14)
Geometric parameters (Å, º) top
C1—N11.477 (5)C10—H10A0.9700
C1—C21.515 (6)C10—H10B0.9700
C1—H1A0.9700C11—C121.432 (8)
C1—H1B0.9700C11—H11A0.9700
C2—N21.487 (6)C11—H11B0.9700
C2—H2A0.9700C12—N51.119 (6)
C2—H2B0.9700C13—N31.486 (6)
C3—N21.486 (6)C13—C141.526 (7)
C3—C41.501 (7)C13—H13A0.9700
C3—H3A0.9700C13—H13B0.9700
C3—H3B0.9700C14—C151.423 (7)
C4—N31.464 (6)C14—H14A0.9700
C4—H4A0.9700C14—H14B0.9700
C4—H4B0.9700C15—N61.170 (6)
C5—N31.481 (5)C16—O11.235 (5)
C5—C61.491 (6)C16—N71.291 (6)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C17—N71.405 (6)
C6—N11.477 (5)C17—H17A0.9600
C6—H6A0.9700C17—H17B0.9600
C6—H6B0.9700C17—H17C0.9600
C7—N11.478 (5)C18—N71.426 (6)
C7—C81.531 (6)C18—H18A0.9600
C7—H7A0.9700C18—H18B0.9600
C7—H7B0.9700C18—H18C0.9600
C8—C91.458 (7)Cl1—Co12.4382 (14)
C8—H8A0.9700Cl2—Co12.4096 (13)
C8—H8B0.9700Co1—O12.114 (3)
C9—N41.116 (6)Co1—N22.194 (4)
C10—N21.470 (6)Co1—N32.200 (4)
C10—C111.550 (6)Co1—N12.232 (4)
N1—C1—C2112.0 (3)C14—C13—H13A107.8
N1—C1—H1A109.2N3—C13—H13B107.8
C2—C1—H1A109.2C14—C13—H13B107.8
N1—C1—H1B109.2H13A—C13—H13B107.1
C2—C1—H1B109.2C15—C14—C13115.1 (5)
H1A—C1—H1B107.9C15—C14—H14A108.5
N2—C2—C1112.4 (4)C13—C14—H14A108.5
N2—C2—H2A109.1C15—C14—H14B108.5
C1—C2—H2A109.1C13—C14—H14B108.5
N2—C2—H2B109.1H14A—C14—H14B107.5
C1—C2—H2B109.1N6—C15—C14177.6 (6)
H2A—C2—H2B107.9O1—C16—N7125.1 (5)
N2—C3—C4111.7 (3)O1—C16—H16117.5
N2—C3—H3A109.3N7—C16—H16117.5
C4—C3—H3A109.3N7—C17—H17A109.5
N2—C3—H3B109.3N7—C17—H17B109.5
C4—C3—H3B109.3H17A—C17—H17B109.5
H3A—C3—H3B107.9N7—C17—H17C109.5
N3—C4—C3112.2 (4)H17A—C17—H17C109.5
N3—C4—H4A109.2H17B—C17—H17C109.5
C3—C4—H4A109.2N7—C18—H18A109.5
N3—C4—H4B109.2N7—C18—H18B109.5
C3—C4—H4B109.2H18A—C18—H18B109.5
H4A—C4—H4B107.9N7—C18—H18C109.5
N3—C5—C6112.8 (3)H18A—C18—H18C109.5
N3—C5—H5A109.0H18B—C18—H18C109.5
C6—C5—H5A109.0O1—Co1—N287.78 (12)
N3—C5—H5B109.0O1—Co1—N3168.01 (13)
C6—C5—H5B109.0N2—Co1—N380.93 (13)
H5A—C5—H5B107.8O1—Co1—N193.00 (13)
N1—C6—C5112.5 (3)N2—Co1—N181.07 (14)
N1—C6—H6A109.1N3—Co1—N181.30 (13)
C5—C6—H6A109.1O1—Co1—Cl290.45 (9)
N1—C6—H6B109.1N2—Co1—Cl2173.80 (10)
C5—C6—H6B109.1N3—Co1—Cl2100.34 (10)
H6A—C6—H6B107.8N1—Co1—Cl293.09 (10)
N1—C7—C8117.6 (4)O1—Co1—Cl191.12 (9)
N1—C7—H7A107.9N2—Co1—Cl193.38 (10)
C8—C7—H7A107.9N3—Co1—Cl193.58 (10)
N1—C7—H7B107.9N1—Co1—Cl1172.94 (10)
C8—C7—H7B107.9Cl2—Co1—Cl192.60 (4)
H7A—C7—H7B107.2C6—N1—C1113.8 (3)
C9—C8—C7117.1 (4)C6—N1—C7111.0 (3)
C9—C8—H8A108.0C1—N1—C7111.2 (3)
C7—C8—H8A108.0C6—N1—Co1100.5 (2)
C9—C8—H8B108.0C1—N1—Co1108.7 (3)
C7—C8—H8B108.0C7—N1—Co1111.2 (2)
H8A—C8—H8B107.3C10—N2—C3110.8 (3)
N4—C9—C8177.2 (6)C10—N2—C2112.0 (3)
N2—C10—C11115.5 (4)C3—N2—C2112.4 (3)
N2—C10—H10A108.4C10—N2—Co1109.8 (3)
C11—C10—H10A108.4C3—N2—Co1109.0 (3)
N2—C10—H10B108.4C2—N2—Co1102.6 (3)
C11—C10—H10B108.4C4—N3—C5113.5 (3)
H10A—C10—H10B107.5C4—N3—C13112.0 (3)
C12—C11—C10112.8 (4)C5—N3—C13112.0 (4)
C12—C11—H11A109.0C4—N3—Co1102.5 (3)
C10—C11—H11A109.0C5—N3—Co1108.2 (3)
C12—C11—H11B109.0C13—N3—Co1108.0 (3)
C10—C11—H11B109.0C16—N7—C17121.4 (4)
H11A—C11—H11B107.8C16—N7—C18120.9 (5)
N5—C12—C11178.4 (7)C17—N7—C18117.6 (4)
N3—C13—C14118.2 (4)C16—O1—Co1119.1 (3)
N3—C13—H13A107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl2i0.972.753.658 (4)157
C2—H2A···O10.972.583.120 (5)116
C3—H3A···Cl2i0.972.813.774 (4)170
C7—H7A···Cl20.972.653.419 (4)136
C10—H10A···O10.972.473.149 (6)127
C10—H10B···Cl10.972.733.218 (4)111
C11—H11A···Cl1i0.972.623.525 (5)156
C11—H11B···Cl2ii0.972.653.502 (5)147
C13—H13A···Cl10.972.723.460 (5)133
C16—H16···Cl20.932.803.325 (5)117
C17—H17A···O10.962.342.741 (7)105
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CoCl2(C15H24N6)(C3H7NO)]
Mr491.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.787 (2), 19.710 (5), 12.370 (3)
β (°) 97.936 (4)
V3)2363.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.746, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
12542, 4630, 3320
Rint0.052
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.154, 1.07
No. of reflections4630
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.78

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Cl1—Co12.4382 (14)Co1—N22.194 (4)
Cl2—Co12.4096 (13)Co1—N32.200 (4)
Co1—O12.114 (3)Co1—N12.232 (4)
O1—Co1—N287.78 (12)N3—Co1—Cl2100.34 (10)
O1—Co1—N3168.01 (13)N1—Co1—Cl293.09 (10)
N2—Co1—N380.93 (13)O1—Co1—Cl191.12 (9)
O1—Co1—N193.00 (13)N2—Co1—Cl193.38 (10)
N2—Co1—N181.07 (14)N3—Co1—Cl193.58 (10)
N3—Co1—N181.30 (13)N1—Co1—Cl1172.94 (10)
O1—Co1—Cl290.45 (9)Cl2—Co1—Cl192.60 (4)
N2—Co1—Cl2173.80 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl2i0.972.753.658 (4)157
C2—H2A···O10.972.583.120 (5)116
C3—H3A···Cl2i0.972.813.774 (4)170
C7—H7A···Cl20.972.653.419 (4)136
C10—H10A···O10.972.473.149 (6)127
C10—H10B···Cl10.972.733.218 (4)111
C11—H11A···Cl1i0.972.623.525 (5)156
C11—H11B···Cl2ii0.972.653.502 (5)147
C13—H13A···Cl10.972.723.460 (5)133
C16—H16···Cl20.932.803.325 (5)117
C17—H17A···O10.962.342.741 (7)105
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

This project was supported by the Natural Science Foundation of China (grant No. 20475026).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationScarpellini, M., Wu, A. J., Kampf, J. W. & Pecoraro, V. L. (2005). Inorg. Chem. 44, 5001–5010.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). J. Chem. Soc. Dalton Trans. pp. 304–310.  CSD CrossRef Google Scholar
First citationTei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633–2634.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1041-m1042
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds