organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1α,2β,3α,7α,11α,13β)-1,3,11-Triacet­­oxy-2,13-bis­­(benz­yl­oxy)-7-hydr­­oxy-21-methyl-N,19-secohetisan-19-al

aDepartment of Chemistry and Life Sciences, Leshan Teachers College, Leshan 614004, People's Republic of China, bThe First Affiliated Hospital, Chengdu Medical College, Xindu 610500, People's Republic of China, and cMianyang Normal University, Mianyang 621000, People's Republic of China
*Correspondence e-mail: wangxq193@126.com

(Received 23 April 2008; accepted 24 June 2008; online 5 July 2008)

The title compound (delgradine), C41H43NO12, is a hetisine-type C20-diterpenoid alkaloid, isolated from the roots of Aconitum carmichaeli Debx. In the crystal structure, the mol­ecule assumes an U-shaped conformation, the terminal benzene rings being approximately parallel and partially overlapped with each other. The mol­ecule contains eight alicyclic and heterocyclic rings. Cyclo­hexane rings A and B adopt similar chair conformations; the six-membered rings C, D and E form a bicyclo­[2.2.2]octane system with a boat conformation for each six-membered ring, the six-membered heterocyclic ring F has a screw-boat conformation and both of the five-membered rings G and H have envelope conformations. The crystal structure contains inter­molecular O—H⋯O hydrogen bonding.

Related literature

For related literature, see: Deng et al. (1992[Deng, Y. P., Chen, D. H. & Sun, W. L. (1992). Acta Chim. Sinica, 50, 822-826.]).

[Scheme 1]

Experimental

Crystal data
  • C41H43NO12

  • Mr = 741.76

  • Monoclinic, C 2

  • a = 19.892 (4) Å

  • b = 11.307 (5) Å

  • c = 16.825 (5) Å

  • β = 91.07 (2)°

  • V = 3784 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 (2) K

  • 0.42 × 0.40 × 0.36 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 4309 measured reflections

  • 3705 independent reflections

  • 2282 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 300 reflections intensity decay: 2.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.130

  • S = 1.01

  • 3705 reflections

  • 498 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O19i 0.82 1.94 2.743 (5) 167
Symmetry code: (i) -x, y, -z+2.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). American Crystallographic Association meeting, Pittsburgh. Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The diterpenoid alkaloid, delgradine, was previously isolated from Delphinium grandiflorum L. (Deng et al., 1992), and its structure was established from the spectroscopic data. In our recent investigation, it was isolated from Aconitum carmichaeli Debx, and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The molecule of the title compound assumes an U-shaped conformation, with terminal benzene rings being approximately parallel and partially overlapped to each other. The molecule contains eight alicyclic and heterocyclic rings. Cyclohexane rings A (C1/C2/C3/C4/C5/C10) and B (C5/C6/C7/C8/C9/C10) adopt chair conformations; six-membered rings C (C8/C9/C11/C12/C13/C14), D (C8/C9/C11/C12/C15/C16) and E (C8/C12/C13/C14/C15/C16) form a bicycle [2.2.2] octane system with the boat conformation for each six-membered ring C, D and E; the six-membered heterocyclic ring F (C6/C7/C8/C14/C20/N1) adopts a screw-boat conformation; while the five-membered rings G (C5/C6/C10/C20/N1) and H (C8/C9/C10/C14/C20) adopt the same envelope conformation.

The crystal structure contains intermolecular O—H···O hydrogen bond between the hydroxy group and aldehyde O atom (Table 1).

Related literature top

For related literature, see: Deng et al. (1992).

Experimental top

The title compound was isolated from the roots of Aconitum carmichaeli Debx and crystals suitable for X-ray structure analysis were obtained by slow evaporation from an acetone solution at room temperature.

Refinement top

H atoms were located geometrically with C—H distance of 0.93–0.98 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C). The absolute configuration has not been determined for the structure.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity.
(1α,2β,3α,7α,11α,13β)-1,3,11-Triacetoxy-2,13-bis(benzyloxy)-7- hydroxy-21-methyl-N,19-secohetisan-19-al top
Crystal data top
C41H43NO12F(000) = 1568
Mr = 741.76Dx = 1.302 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 55 reflections
a = 19.892 (4) Åθ = 4.7–7.6°
b = 11.307 (5) ŵ = 0.10 mm1
c = 16.825 (5) ÅT = 291 K
β = 91.07 (2)°Block, colourless
V = 3784 (2) Å30.42 × 0.40 × 0.36 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.018
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.2°
Graphite monochromatorh = 624
ω/2θ scansk = 130
4309 measured reflectionsl = 2020
3705 independent reflections3 standard reflections every 300 reflections
2282 reflections with I > 2σ(I) intensity decay: 2.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0734P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3705 reflectionsΔρmax = 0.19 e Å3
498 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (3)
Crystal data top
C41H43NO12V = 3784 (2) Å3
Mr = 741.76Z = 4
Monoclinic, C2Mo Kα radiation
a = 19.892 (4) ŵ = 0.10 mm1
b = 11.307 (5) ÅT = 291 K
c = 16.825 (5) Å0.42 × 0.40 × 0.36 mm
β = 91.07 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.018
4309 measured reflections3 standard reflections every 300 reflections
3705 independent reflections intensity decay: 2.6%
2282 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.130H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
3705 reflectionsΔρmin = 0.20 e Å3
498 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.10745 (17)0.5052 (3)0.8921 (2)0.0427 (9)
O1A0.21024 (15)0.8335 (3)0.78232 (16)0.0456 (8)
O1B0.26263 (18)0.8288 (3)0.6655 (2)0.0639 (10)
O2A0.12403 (14)0.5813 (3)0.69392 (16)0.0449 (7)
O2B0.1133 (2)0.6310 (4)0.5646 (2)0.0872 (13)
O3A0.01724 (15)0.7482 (3)0.69724 (18)0.0593 (9)
O3B0.0463 (4)0.9136 (5)0.6367 (3)0.128 (2)
O70.14601 (16)0.5003 (3)1.06651 (19)0.0573 (9)
H7A0.11000.50651.08910.069*
O11A0.33185 (14)0.7260 (3)0.82500 (17)0.0465 (8)
O11B0.43602 (17)0.7575 (4)0.8731 (2)0.0794 (12)
O13A0.30189 (15)0.4752 (3)0.80593 (17)0.0472 (8)
O13B0.2702 (2)0.2863 (3)0.7952 (2)0.0871 (13)
O190.03068 (16)0.5601 (4)0.8561 (2)0.0716 (11)
C10.1948 (2)0.7076 (4)0.7724 (2)0.0378 (10)
H10.23320.66680.74920.045*
C20.1350 (2)0.7038 (4)0.7150 (3)0.0437 (11)
H20.14620.74800.66700.052*
C30.0741 (2)0.7595 (4)0.7516 (2)0.0463 (11)
H30.08340.84400.75860.056*
C40.0528 (2)0.7102 (4)0.8317 (3)0.0471 (11)
C50.1138 (2)0.7027 (4)0.8903 (2)0.0399 (10)
H50.12000.77770.91870.048*
C60.1016 (2)0.6019 (5)0.9487 (3)0.0482 (12)
H60.05620.60590.97020.058*
C70.1547 (2)0.5984 (4)1.0151 (2)0.0439 (11)
H70.15190.67141.04620.053*
C80.2248 (2)0.5890 (4)0.9808 (2)0.0383 (10)
C90.2367 (2)0.6898 (4)0.9200 (2)0.0374 (10)
H90.22530.76550.94470.045*
C100.1821 (2)0.6595 (4)0.8551 (2)0.0361 (10)
C110.3135 (2)0.6881 (4)0.9037 (3)0.0412 (11)
H110.33420.74470.94090.049*
C120.3439 (2)0.5665 (4)0.9241 (3)0.0462 (12)
H120.38930.55990.90280.055*
C130.2999 (2)0.4682 (4)0.8923 (3)0.0449 (11)
H130.31820.39190.90990.054*
C140.2277 (2)0.4820 (4)0.9232 (2)0.0393 (10)
H140.21330.40950.94990.047*
C150.2779 (2)0.5792 (5)1.0474 (2)0.0485 (12)
H15A0.27800.65101.07900.058*
H15B0.26700.51351.08190.058*
C160.3465 (2)0.5605 (4)1.0133 (3)0.0489 (12)
C170.4016 (3)0.5488 (7)1.0559 (4)0.086 (2)
H17A0.44290.54371.03110.103*
H17B0.39950.54571.11100.103*
C180.0002 (2)0.7940 (5)0.8672 (3)0.0626 (14)
H18A0.03770.80120.83070.075*
H18B0.01950.87040.87610.075*
H18C0.01530.76230.91670.075*
C190.0189 (2)0.5891 (5)0.8198 (3)0.0542 (12)
H190.03700.53630.78360.065*
C200.1745 (2)0.5210 (4)0.8599 (3)0.0402 (10)
H200.18000.48180.80850.048*
C210.0857 (3)0.3858 (5)0.9132 (3)0.0620 (14)
H21A0.03790.38560.92080.074*
H21B0.10820.36160.96150.074*
H21C0.09660.33210.87120.074*
C220.2639 (4)1.0078 (5)0.7406 (4)0.092 (2)
H22A0.28961.03900.69770.110*
H22B0.28991.01230.78910.110*
H22C0.22341.05310.74590.110*
C230.2465 (3)0.8829 (5)0.7239 (3)0.0537 (13)
C240.0951 (3)0.3908 (6)0.5239 (4)0.0798 (18)
H240.09610.44480.48230.096*
C250.0857 (4)0.2712 (8)0.5086 (5)0.105 (2)
H250.08150.24500.45640.126*
C260.0826 (3)0.1918 (7)0.5692 (5)0.097 (2)
H260.07600.11200.55800.116*
C270.0890 (3)0.2280 (6)0.6458 (4)0.0789 (18)
H270.08670.17350.68700.095*
C280.0991 (3)0.3476 (5)0.6623 (4)0.0633 (15)
H280.10320.37270.71480.076*
C290.1030 (2)0.4288 (5)0.6018 (3)0.0578 (14)
C300.1133 (2)0.5557 (5)0.6152 (3)0.0539 (13)
C310.0498 (3)0.8056 (9)0.5893 (4)0.123 (3)
H31A0.04280.73020.56470.148*
H31B0.05460.86530.54900.148*
H31C0.08980.80280.62030.148*
C320.0092 (3)0.8346 (8)0.6421 (4)0.0823 (19)
C330.4142 (3)0.7951 (8)0.7368 (4)0.098 (2)
H33A0.43890.73360.71110.117*
H33B0.44100.86560.73940.117*
H33C0.37350.81080.70710.117*
C340.3974 (3)0.7571 (5)0.8182 (3)0.0577 (13)
C350.2721 (3)0.3096 (6)0.6249 (3)0.0702 (16)
H350.26020.23580.64470.084*
C360.2733 (3)0.3267 (7)0.5437 (4)0.0825 (19)
H360.26340.26470.50910.099*
C370.2888 (3)0.4340 (8)0.5155 (4)0.0827 (19)
H370.29010.44610.46080.099*
C380.3029 (3)0.5266 (6)0.5663 (3)0.0768 (17)
H380.31210.60130.54620.092*
C390.3033 (3)0.5082 (5)0.6456 (3)0.0607 (14)
H390.31400.57050.67960.073*
C400.2881 (2)0.3992 (5)0.6772 (3)0.0494 (12)
C410.2861 (3)0.3773 (5)0.7645 (3)0.0528 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.039 (2)0.042 (2)0.047 (2)0.0067 (17)0.0019 (17)0.0073 (19)
O1A0.0632 (19)0.0374 (17)0.0361 (16)0.0078 (16)0.0019 (15)0.0036 (15)
O1B0.080 (2)0.070 (2)0.0413 (19)0.020 (2)0.0041 (17)0.0045 (19)
O2A0.0510 (17)0.0457 (19)0.0379 (17)0.0074 (15)0.0017 (13)0.0004 (15)
O2B0.142 (4)0.078 (3)0.042 (2)0.011 (3)0.015 (2)0.004 (2)
O3A0.0490 (18)0.080 (3)0.0489 (19)0.0077 (18)0.0111 (15)0.006 (2)
O3B0.168 (6)0.104 (4)0.111 (4)0.003 (4)0.041 (4)0.053 (4)
O70.0489 (19)0.074 (2)0.049 (2)0.0051 (18)0.0111 (15)0.0233 (18)
O11A0.0421 (16)0.0542 (19)0.0433 (18)0.0109 (15)0.0012 (14)0.0066 (15)
O11B0.051 (2)0.104 (3)0.083 (3)0.031 (2)0.009 (2)0.005 (3)
O13A0.0613 (19)0.0440 (19)0.0367 (17)0.0014 (16)0.0077 (14)0.0043 (15)
O13B0.156 (4)0.042 (2)0.064 (2)0.020 (3)0.016 (2)0.001 (2)
O190.0430 (18)0.092 (3)0.080 (2)0.0066 (19)0.0115 (18)0.017 (2)
C10.043 (2)0.038 (2)0.032 (2)0.001 (2)0.0035 (19)0.000 (2)
C20.047 (2)0.041 (3)0.042 (2)0.004 (2)0.000 (2)0.006 (2)
C30.045 (2)0.046 (3)0.048 (3)0.008 (2)0.003 (2)0.007 (2)
C40.042 (2)0.048 (3)0.051 (3)0.006 (2)0.002 (2)0.001 (2)
C50.044 (2)0.041 (2)0.035 (2)0.003 (2)0.002 (2)0.005 (2)
C60.034 (2)0.066 (3)0.045 (3)0.002 (2)0.007 (2)0.006 (3)
C70.052 (3)0.047 (3)0.033 (2)0.006 (2)0.003 (2)0.008 (2)
C80.042 (2)0.042 (2)0.031 (2)0.004 (2)0.0007 (18)0.001 (2)
C90.041 (2)0.037 (2)0.034 (2)0.002 (2)0.0027 (19)0.005 (2)
C100.039 (2)0.035 (2)0.035 (2)0.0017 (18)0.0003 (19)0.0051 (19)
C110.047 (2)0.045 (3)0.031 (2)0.008 (2)0.001 (2)0.001 (2)
C120.041 (2)0.056 (3)0.042 (3)0.000 (2)0.004 (2)0.001 (2)
C130.053 (3)0.043 (3)0.039 (3)0.004 (2)0.002 (2)0.002 (2)
C140.044 (2)0.038 (2)0.036 (2)0.003 (2)0.0031 (19)0.004 (2)
C150.050 (3)0.059 (3)0.036 (2)0.001 (3)0.002 (2)0.000 (3)
C160.052 (3)0.055 (3)0.039 (2)0.002 (2)0.002 (2)0.006 (2)
C170.057 (3)0.138 (6)0.063 (4)0.006 (4)0.008 (3)0.020 (4)
C180.053 (3)0.079 (4)0.056 (3)0.017 (3)0.002 (2)0.002 (3)
C190.042 (3)0.067 (3)0.054 (3)0.000 (3)0.002 (2)0.004 (3)
C200.049 (3)0.038 (3)0.034 (2)0.005 (2)0.002 (2)0.006 (2)
C210.061 (3)0.056 (3)0.069 (3)0.022 (3)0.007 (3)0.019 (3)
C220.156 (7)0.053 (4)0.066 (4)0.032 (4)0.017 (4)0.003 (3)
C230.077 (3)0.048 (3)0.036 (3)0.018 (3)0.001 (2)0.010 (3)
C240.089 (4)0.085 (5)0.065 (4)0.008 (4)0.007 (3)0.018 (3)
C250.129 (6)0.095 (6)0.091 (5)0.015 (5)0.009 (4)0.045 (5)
C260.096 (5)0.067 (5)0.128 (7)0.007 (4)0.012 (5)0.040 (5)
C270.071 (4)0.062 (4)0.103 (5)0.005 (3)0.012 (3)0.018 (4)
C280.061 (3)0.062 (4)0.067 (4)0.005 (3)0.002 (3)0.009 (3)
C290.048 (3)0.066 (4)0.059 (3)0.005 (3)0.003 (2)0.011 (3)
C300.054 (3)0.063 (4)0.044 (3)0.006 (3)0.006 (2)0.002 (3)
C310.077 (4)0.222 (10)0.070 (4)0.043 (6)0.015 (3)0.011 (6)
C320.085 (4)0.100 (5)0.061 (4)0.027 (4)0.014 (3)0.013 (4)
C330.066 (4)0.144 (7)0.085 (4)0.027 (4)0.021 (3)0.029 (5)
C340.051 (3)0.058 (3)0.064 (3)0.021 (3)0.009 (3)0.005 (3)
C350.073 (4)0.067 (4)0.071 (4)0.008 (3)0.012 (3)0.020 (3)
C360.083 (4)0.100 (6)0.064 (4)0.010 (4)0.003 (3)0.033 (4)
C370.083 (4)0.116 (6)0.049 (3)0.009 (4)0.007 (3)0.010 (4)
C380.091 (4)0.085 (5)0.055 (4)0.002 (4)0.009 (3)0.016 (4)
C390.070 (3)0.064 (4)0.048 (3)0.007 (3)0.010 (3)0.004 (3)
C400.054 (3)0.052 (3)0.042 (3)0.001 (2)0.009 (2)0.009 (2)
C410.063 (3)0.043 (3)0.053 (3)0.002 (3)0.014 (2)0.007 (3)
Geometric parameters (Å, º) top
N1—C61.456 (6)C14—C201.551 (6)
N1—C201.459 (5)C14—H140.9800
N1—C211.464 (6)C15—C161.506 (6)
O1A—C231.352 (5)C15—H15A0.9700
O1A—C11.464 (5)C15—H15B0.9700
O1B—C231.206 (6)C16—C171.304 (7)
O2A—C301.369 (5)C17—H17A0.9300
O2A—C21.445 (6)C17—H17B0.9300
O2B—C301.203 (6)C18—H18A0.9600
O3A—C321.354 (8)C18—H18B0.9600
O3A—C31.447 (5)C18—H18C0.9600
O3B—C321.165 (9)C19—H190.9300
O7—C71.420 (5)C20—H200.9800
O7—H7A0.8200C21—H21A0.9600
O11A—C341.358 (5)C21—H21B0.9600
O11A—C111.445 (5)C21—H21C0.9600
O11B—C341.190 (6)C22—C231.480 (8)
O13A—C411.342 (6)C22—H22A0.9600
O13A—C131.457 (5)C22—H22B0.9600
O13B—C411.197 (6)C22—H22C0.9600
O19—C191.216 (5)C24—C291.385 (8)
C1—C101.519 (6)C24—C251.389 (11)
C1—C21.520 (6)C24—H240.9300
C1—H10.9800C25—C261.360 (11)
C2—C31.506 (6)C25—H250.9300
C2—H20.9800C26—C271.356 (9)
C3—C41.525 (6)C26—H260.9300
C3—H30.9800C27—C281.394 (8)
C4—C191.538 (8)C27—H270.9300
C4—C181.545 (7)C28—C291.374 (8)
C4—C51.552 (6)C28—H280.9300
C5—C61.528 (7)C29—C301.467 (8)
C5—C101.570 (6)C31—C321.494 (9)
C5—H50.9800C31—H31A0.9600
C6—C71.524 (6)C31—H31B0.9600
C6—H60.9800C31—H31C0.9600
C7—C81.522 (6)C33—C341.479 (7)
C7—H70.9800C33—H33A0.9600
C8—C151.529 (6)C33—H33B0.9600
C8—C141.552 (6)C33—H33C0.9600
C8—C91.553 (6)C35—C401.376 (7)
C9—C111.557 (6)C35—C361.381 (8)
C9—C101.564 (6)C35—H350.9300
C9—H90.9800C36—C371.341 (10)
C10—C201.576 (6)C36—H360.9300
C11—C121.538 (7)C37—C381.377 (9)
C11—H110.9800C37—H370.9300
C12—C161.501 (6)C38—C391.350 (7)
C12—C131.507 (6)C38—H380.9300
C12—H120.9800C39—C401.378 (7)
C13—C141.544 (6)C39—H390.9300
C13—H130.9800C40—C411.490 (7)
C6—N1—C20103.7 (3)H15A—C15—H15B108.1
C6—N1—C21120.4 (4)C17—C16—C12124.5 (5)
C20—N1—C21118.7 (4)C17—C16—C15124.2 (4)
C23—O1A—C1115.6 (4)C12—C16—C15111.1 (4)
C30—O2A—C2117.4 (4)C16—C17—H17A120.0
C32—O3A—C3116.8 (5)C16—C17—H17B120.0
C7—O7—H7A109.5H17A—C17—H17B120.0
C34—O11A—C11114.4 (3)C4—C18—H18A109.5
C41—O13A—C13117.6 (4)C4—C18—H18B109.5
O1A—C1—C10106.4 (3)H18A—C18—H18B109.5
O1A—C1—C2105.1 (3)C4—C18—H18C109.5
C10—C1—C2115.4 (4)H18A—C18—H18C109.5
O1A—C1—H1109.9H18B—C18—H18C109.5
C10—C1—H1109.9O19—C19—C4122.2 (5)
C2—C1—H1109.9O19—C19—H19118.9
O2A—C2—C3112.5 (4)C4—C19—H19118.9
O2A—C2—C1107.2 (3)N1—C20—C14109.1 (3)
C3—C2—C1110.8 (4)N1—C20—C10103.3 (4)
O2A—C2—H2108.7C14—C20—C10104.6 (3)
C3—C2—H2108.7N1—C20—H20113.0
C1—C2—H2108.7C14—C20—H20113.0
O3A—C3—C2109.2 (3)C10—C20—H20113.0
O3A—C3—C4107.5 (3)N1—C21—H21A109.5
C2—C3—C4116.5 (4)N1—C21—H21B109.5
O3A—C3—H3107.8H21A—C21—H21B109.5
C2—C3—H3107.8N1—C21—H21C109.5
C4—C3—H3107.8H21A—C21—H21C109.5
C3—C4—C19109.8 (4)H21B—C21—H21C109.5
C3—C4—C18108.6 (4)C23—C22—H22A109.5
C19—C4—C18107.2 (4)C23—C22—H22B109.5
C3—C4—C5110.8 (4)H22A—C22—H22B109.5
C19—C4—C5111.7 (4)C23—C22—H22C109.5
C18—C4—C5108.6 (4)H22A—C22—H22C109.5
C6—C5—C4108.5 (4)H22B—C22—H22C109.5
C6—C5—C1099.2 (3)O1B—C23—O1A122.5 (4)
C4—C5—C10116.7 (4)O1B—C23—C22125.1 (5)
C6—C5—H5110.6O1A—C23—C22112.4 (5)
C4—C5—H5110.6C29—C24—C25119.3 (7)
C10—C5—H5110.6C29—C24—H24120.3
N1—C6—C7113.4 (4)C25—C24—H24120.3
N1—C6—C597.1 (3)C26—C25—C24120.8 (7)
C7—C6—C5111.9 (4)C26—C25—H25119.6
N1—C6—H6111.2C24—C25—H25119.6
C7—C6—H6111.2C27—C26—C25120.5 (7)
C5—C6—H6111.2C27—C26—H26119.7
O7—C7—C8107.4 (4)C25—C26—H26119.7
O7—C7—C6112.0 (4)C26—C27—C28119.5 (7)
C8—C7—C6110.6 (3)C26—C27—H27120.2
O7—C7—H7108.9C28—C27—H27120.2
C8—C7—H7108.9C29—C28—C27120.7 (6)
C6—C7—H7108.9C29—C28—H28119.6
C7—C8—C15110.7 (3)C27—C28—H28119.6
C7—C8—C14109.6 (3)C28—C29—C24119.1 (5)
C15—C8—C14111.7 (4)C28—C29—C30123.3 (5)
C7—C8—C9110.5 (3)C24—C29—C30117.6 (6)
C15—C8—C9115.1 (4)O2B—C30—O2A122.2 (5)
C14—C8—C998.8 (3)O2B—C30—C29125.8 (5)
C8—C9—C11105.6 (3)O2A—C30—C29112.0 (5)
C8—C9—C10100.8 (3)C32—C31—H31A109.5
C11—C9—C10123.0 (3)C32—C31—H31B109.5
C8—C9—H9108.8H31A—C31—H31B109.5
C11—C9—H9108.8C32—C31—H31C109.5
C10—C9—H9108.8H31A—C31—H31C109.5
C1—C10—C9115.8 (3)H31B—C31—H31C109.5
C1—C10—C5113.2 (3)O3B—C32—O3A122.7 (6)
C9—C10—C5105.3 (3)O3B—C32—C31127.8 (7)
C1—C10—C20114.9 (4)O3A—C32—C31109.4 (7)
C9—C10—C20104.4 (3)C34—C33—H33A109.5
C5—C10—C20101.8 (3)C34—C33—H33B109.5
O11A—C11—C12111.4 (4)H33A—C33—H33B109.5
O11A—C11—C9115.0 (3)C34—C33—H33C109.5
C12—C11—C9110.7 (4)H33A—C33—H33C109.5
O11A—C11—H11106.4H33B—C33—H33C109.5
C12—C11—H11106.4O11B—C34—O11A122.8 (4)
C9—C11—H11106.4O11B—C34—C33124.4 (5)
C16—C12—C13109.3 (4)O11A—C34—C33112.8 (5)
C16—C12—C11105.6 (4)C40—C35—C36121.5 (6)
C13—C12—C11110.9 (3)C40—C35—H35119.3
C16—C12—H12110.3C36—C35—H35119.3
C13—C12—H12110.3C37—C36—C35119.0 (6)
C11—C12—H12110.3C37—C36—H36120.5
O13A—C13—C12106.7 (4)C35—C36—H36120.5
O13A—C13—C14111.9 (3)C36—C37—C38120.9 (6)
C12—C13—C14110.1 (4)C36—C37—H37119.6
O13A—C13—H13109.3C38—C37—H37119.6
C12—C13—H13109.3C39—C38—C37119.6 (7)
C14—C13—H13109.3C39—C38—H38120.2
C13—C14—C20115.1 (3)C37—C38—H38120.2
C13—C14—C8109.5 (3)C38—C39—C40121.5 (6)
C20—C14—C8100.1 (3)C38—C39—H39119.3
C13—C14—H14110.6C40—C39—H39119.3
C20—C14—H14110.6C35—C40—C39117.5 (5)
C8—C14—H14110.6C35—C40—C41119.9 (5)
C16—C15—C8110.4 (3)C39—C40—C41122.6 (5)
C16—C15—H15A109.6O13B—C41—O13A123.0 (4)
C8—C15—H15A109.6O13B—C41—C40125.5 (5)
C16—C15—H15B109.6O13A—C41—C40111.4 (4)
C8—C15—H15B109.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O19i0.821.942.743 (5)167
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC41H43NO12
Mr741.76
Crystal system, space groupMonoclinic, C2
Temperature (K)291
a, b, c (Å)19.892 (4), 11.307 (5), 16.825 (5)
β (°) 91.07 (2)
V3)3784 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.40 × 0.36
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4309, 3705, 2282
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.01
No. of reflections3705
No. of parameters498
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O19i0.821.942.743 (5)166.5
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

This project was supported by Mianyang Normal University Scientific Research Fund (MY2006003) and a grant from Sichuan Provincial Department of Education, China (2005 A165).

References

First citationDeng, Y. P., Chen, D. H. & Sun, W. L. (1992). Acta Chim. Sinica, 50, 822–826.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). American Crystallographic Association meeting, Pittsburgh. Abstract PA 104.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds