organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl­sulfanyl-5-methyl-1-phenyl-7-(pyrrolidin-1-yl)-1H-pyrimido[4,5-e][1,3,4]thia­diazine

aDepartment of Chemistry, School of Sciences, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran, and bDepartment of Chemistry, School of Sciences, Ferdowsi University, Mashhad, 917751436, Iran
*Correspondence e-mail: nikpour_m@yahoo.com

(Received 3 June 2008; accepted 8 July 2008; online 16 July 2008)

In the crystal structure of the title compound, C18H21N5S2, the thia­diazine six-membered ring and pyrrolidine five-membered ring display boat and envelope conformations, respectively. The crystal structure contains weak C—H⋯N and C—H⋯S hydrogen bonding.

Related literature

For general background, see: Rahimizadeh et al. (1997[Rahimizadeh, M., Heravi, M. M. & Malekan, A. (1997). Indian J. Heterocycl. Chem. 6, 223-224.]); Elliott (1981[Elliott, A. J. (1981). J. Heterocycl. Chem. 18, 799-800.]); Bakavoli et al. (2006[Bakavoli, M., Nikpour, M. & Rahimizadeh, M. (2006). Phosphorus Sulfur Silicon Relat. Elem., 180, 2265-2268.], 2007[Bakavoli, M., Nikpour, M. & Rahimizadeh, M. (2007). J. Heterocycl. Chem. 44, 463-465.], 2008[Bakavoli, M., Rahimizadeh, M., Shiri, A., Eshghi, H. & Nikpour, M. (2008). Heterocycles. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N5S2

  • Mr = 371.52

  • Orthorhombic, P 21 21 21

  • a = 8.3601 (2) Å

  • b = 10.3596 (3) Å

  • c = 20.5754 (6) Å

  • V = 1781.98 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 (2) K

  • 0.43 × 0.34 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.926

  • 36558 measured reflections

  • 6479 independent reflections

  • 5952 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 1.01

  • 6479 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2828 Friedel pairs

  • Flack parameter: −0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯N4i 0.95 2.62 3.5630 (15) 172
C15—H15B⋯S2ii 0.99 2.83 3.6264 (13) 138
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The diverse biological activities of pyrimido [4,5-e][1,3,4]thiadiazine persuaded us to search for newer and more efficient synthetic methods for this class of heterocyclic compounds. These compounds have been described as being nucleoside analogues, anti-inflammatory, hypotensive, diuretic, and phosphodiesterase inhibitor agents. Despite their importance from pharmacological and synthetic point of views, comparatively few methods for their preparation have been reported. Pyrimido [4,5-e] [1,3,4]thiadiazines have been solely synthesized from pyrimidines. Previous routes to such systems have involved condensation of 2,4- dichloro–5-nitro -6-methylpyrimidine with dithizone (Rahimizadeh et al., 1997) via Smiles Rearrangement, heterocyclization of 6-hydrazino substituted uracils with isothiocyanates and N-bromosuccinimide, reaction of thiohydrazides with 4,5- dihalopyrimidines (Elliott, 1981), condensation of 5-bromo-2-chloro-6-methyl-4-(1-methylhydrazino) pyrimidine with carbondisulfide and alkylhalides (Bakavoli et al., 2007) and isothiocyanates (Bakavoli et al., 2008). In aprevious communication (Bakavoli et al., 2006), we described a new approach for the formation of 1-phenyl-1H-[1,3,4]thiadiazino[5,6-b]quinoxalines. The synthesis we developed involved heterocyclization of alkyl-2-phenylhydrazinecarbodithioates as bifunctional nucleophiles with 2,3-dichloroquinoxaline as an electrophile. To extend the scope of this strategy, we explored other electrophilic species that could successfully undergo similar reaction.

The molecular structure is shown in Fig. 1. In the title crystal structure, the thiadiazine six-membered ring and pyrrolidine five-membered ring display the boat and envelope configuration, respectively. The crystal structure contains weak C—H···N and C—H···S hydrogen bonding (Table 1).

Related literature top

For general background, see: Rahimizadeh et al. (1997); Elliott (1981); Bakavoli et al. (2006, 2007, 2008).

Experimental top

A mixture of 5-bromo2,4-dichloro-6-methylpyrimidine (2.5 mmol, 0.61 g), each alkyl-2-phenylhydrazinecarbodithioates (2.5 mmol) and triethylamine (1 ml) in acetonitril (10 ml) were boiled under inert atmosphere for 3 h. After the reaction was completed, the mixture was cooled to room temperature, and then evaporated under reduced pressure. The residue was washed with water and crystallized with ethanol and then washed with petroleum ether 40–60 to give pyrimido [4,5-e][1,3,4] thiadiazines. A mixture of previous obtained compound (5 mmol) in ethanol (20 ml) was heated under reflux with pyrrolidine (1.8 g) for 4 h. The solvent was removed and the residue was washed with water and then crystallized from ethanol to give the title crystals.

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.98 Å and torsion angles were refined to fif the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.95 (aromatic) and 0.99 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms).
3-Ethylsulfanyl-5-methyl-1-phenyl-7-pyrrolidin-1-yl-1H- pyrimido[4,5-e][1,3,4]thiadiazine top
Crystal data top
C18H21N5S2Dx = 1.385 Mg m3
Mr = 371.52Melting point: 407 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9869 reflections
a = 8.3601 (2) Åθ = 2.2–30.5°
b = 10.3596 (3) ŵ = 0.31 mm1
c = 20.5754 (6) ÅT = 100 K
V = 1781.98 (8) Å3Prism, colorless
Z = 40.43 × 0.34 × 0.25 mm
F(000) = 784
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6479 independent reflections
Radiation source: fine-focus sealed tube5952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1212
Tmin = 0.878, Tmax = 0.927k = 1515
36558 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.04P)2 + 0.35P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
6479 reflectionsΔρmax = 0.39 e Å3
228 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 2828 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Crystal data top
C18H21N5S2V = 1781.98 (8) Å3
Mr = 371.52Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3601 (2) ŵ = 0.31 mm1
b = 10.3596 (3) ÅT = 100 K
c = 20.5754 (6) Å0.43 × 0.34 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6479 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
5952 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.927Rint = 0.042
36558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.39 e Å3
S = 1.01Δρmin = 0.24 e Å3
6479 reflectionsAbsolute structure: Flack (1983), 2828 Friedel pairs
228 parametersAbsolute structure parameter: 0.01 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22775 (4)0.63689 (3)0.139002 (14)0.01803 (7)
S20.13141 (4)0.84992 (3)0.054416 (14)0.01782 (7)
N10.19500 (13)0.60797 (10)0.01133 (5)0.01500 (19)
N20.15503 (13)0.65520 (9)0.05106 (5)0.01352 (18)
N30.25257 (12)0.79575 (9)0.13046 (5)0.01259 (18)
N40.32207 (12)1.01589 (9)0.10384 (5)0.01291 (18)
N50.32568 (13)0.93935 (9)0.20956 (5)0.01266 (18)
C10.18653 (15)0.68568 (11)0.05930 (6)0.0150 (2)
C20.20870 (15)0.77788 (11)0.06931 (5)0.0123 (2)
C30.29962 (14)0.91713 (11)0.14572 (5)0.01168 (19)
C40.28199 (15)0.99345 (11)0.04183 (5)0.0132 (2)
C50.21638 (15)0.87583 (11)0.02250 (5)0.0133 (2)
C60.24582 (16)0.46325 (12)0.13017 (6)0.0178 (2)
H6A0.23090.42250.17330.021*
H6B0.15920.43200.10140.021*
C70.40534 (17)0.42034 (15)0.10245 (7)0.0253 (3)
H7A0.40780.32590.09950.038*
H7B0.49190.44990.13090.038*
H7C0.41940.45740.05900.038*
C80.13997 (14)0.55459 (11)0.09830 (5)0.0126 (2)
C90.04771 (15)0.57732 (12)0.15373 (6)0.0151 (2)
H9A0.00240.65870.15990.018*
C100.02966 (15)0.48028 (13)0.19981 (6)0.0170 (2)
H10A0.03080.49630.23810.020*
C110.09974 (15)0.35941 (13)0.19027 (6)0.0178 (2)
H11A0.08660.29320.22170.021*
C120.18862 (15)0.33680 (11)0.13451 (6)0.0167 (2)
H12A0.23510.25430.12760.020*
C130.21026 (15)0.43426 (11)0.08857 (6)0.0151 (2)
H13A0.27270.41860.05080.018*
C140.39636 (15)1.05860 (11)0.23480 (6)0.0137 (2)
H14A0.46451.10090.20170.016*
H14B0.31261.11990.24910.016*
C150.49585 (15)1.01128 (13)0.29226 (6)0.0163 (2)
H15A0.60280.98150.27800.020*
H15B0.50871.07970.32540.020*
C160.39505 (16)0.89890 (12)0.31828 (6)0.0163 (2)
H16A0.30430.93060.34470.020*
H16B0.46070.83940.34490.020*
C170.33637 (16)0.83293 (11)0.25639 (6)0.0151 (2)
H17A0.23060.79210.26320.018*
H17B0.41320.76650.24160.018*
C180.30455 (17)1.10308 (12)0.00497 (6)0.0187 (2)
H18A0.38451.16320.01230.028*
H18B0.34121.06930.04690.028*
H18C0.20271.14840.01090.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02582 (15)0.01779 (13)0.01048 (11)0.00161 (12)0.00034 (11)0.00230 (10)
S20.02715 (16)0.01428 (12)0.01203 (12)0.00202 (12)0.00653 (11)0.00012 (10)
N10.0204 (5)0.0137 (4)0.0109 (4)0.0006 (4)0.0009 (4)0.0031 (3)
N20.0203 (5)0.0105 (4)0.0098 (4)0.0011 (4)0.0010 (3)0.0008 (3)
N30.0161 (5)0.0108 (4)0.0109 (4)0.0005 (3)0.0010 (3)0.0011 (3)
N40.0158 (5)0.0110 (4)0.0119 (4)0.0002 (4)0.0005 (3)0.0002 (3)
N50.0181 (5)0.0095 (4)0.0104 (4)0.0000 (3)0.0019 (3)0.0002 (3)
C10.0188 (5)0.0144 (5)0.0117 (5)0.0013 (4)0.0020 (4)0.0030 (4)
C20.0139 (5)0.0110 (4)0.0119 (5)0.0008 (4)0.0017 (4)0.0005 (4)
C30.0125 (5)0.0118 (4)0.0108 (4)0.0018 (4)0.0006 (4)0.0012 (4)
C40.0162 (5)0.0114 (4)0.0120 (4)0.0012 (4)0.0002 (4)0.0005 (4)
C50.0176 (5)0.0121 (5)0.0102 (4)0.0014 (4)0.0021 (4)0.0009 (4)
C60.0181 (6)0.0169 (5)0.0183 (5)0.0004 (4)0.0000 (4)0.0056 (4)
C70.0201 (6)0.0296 (7)0.0261 (7)0.0060 (6)0.0007 (5)0.0019 (5)
C80.0144 (5)0.0109 (4)0.0124 (4)0.0020 (4)0.0023 (4)0.0006 (4)
C90.0160 (5)0.0135 (5)0.0158 (5)0.0003 (4)0.0001 (4)0.0014 (4)
C100.0160 (6)0.0189 (6)0.0162 (5)0.0023 (4)0.0012 (4)0.0011 (4)
C110.0185 (6)0.0160 (5)0.0189 (5)0.0034 (5)0.0021 (4)0.0051 (4)
C120.0188 (5)0.0118 (5)0.0193 (5)0.0008 (4)0.0035 (4)0.0003 (4)
C130.0170 (6)0.0131 (5)0.0152 (5)0.0000 (4)0.0013 (4)0.0014 (4)
C140.0161 (5)0.0117 (5)0.0133 (5)0.0009 (4)0.0013 (4)0.0024 (4)
C150.0165 (5)0.0202 (6)0.0122 (5)0.0021 (4)0.0011 (4)0.0003 (4)
C160.0199 (6)0.0187 (5)0.0104 (5)0.0015 (5)0.0010 (4)0.0006 (4)
C170.0216 (6)0.0115 (5)0.0123 (5)0.0006 (4)0.0019 (4)0.0009 (4)
C180.0282 (7)0.0136 (5)0.0144 (5)0.0019 (5)0.0004 (5)0.0031 (4)
Geometric parameters (Å, º) top
S1—C11.7502 (12)C8—C91.3968 (16)
S1—C61.8144 (13)C9—C101.3901 (17)
S2—C51.7553 (11)C9—H9A0.9500
S2—C11.7657 (12)C10—C111.3963 (19)
N1—C11.2757 (15)C10—H10A0.9500
N1—N21.4137 (13)C11—C121.3868 (18)
N2—C21.3991 (14)C11—H11A0.9500
N2—C81.4307 (15)C12—C131.3948 (16)
N3—C21.3235 (14)C12—H12A0.9500
N3—C31.3545 (14)C13—H13A0.9500
N4—C41.3394 (14)C14—C151.5264 (17)
N4—C31.3508 (14)C14—H14A0.9900
N5—C31.3512 (14)C14—H14B0.9900
N5—C141.4646 (15)C15—C161.5337 (18)
N5—C171.4670 (15)C15—H15A0.9900
C2—C51.4005 (15)C15—H15B0.9900
C4—C51.3942 (15)C16—C171.5261 (16)
C4—C181.5008 (16)C16—H16A0.9900
C6—C71.5171 (19)C16—H16B0.9900
C6—H6A0.9900C17—H17A0.9900
C6—H6B0.9900C17—H17B0.9900
C7—H7A0.9800C18—H18A0.9800
C7—H7B0.9800C18—H18B0.9800
C7—H7C0.9800C18—H18C0.9800
C8—C131.3926 (16)
C1—S1—C6102.06 (6)C8—C9—H9A120.2
C5—S2—C195.34 (5)C9—C10—C11120.48 (12)
C1—N1—N2118.10 (10)C9—C10—H10A119.8
C2—N2—N1118.84 (9)C11—C10—H10A119.8
C2—N2—C8120.50 (9)C12—C11—C10119.50 (11)
N1—N2—C8112.67 (9)C12—C11—H11A120.2
C2—N3—C3115.51 (10)C10—C11—H11A120.2
C4—N4—C3116.20 (10)C11—C12—C13120.52 (11)
C3—N5—C14123.61 (10)C11—C12—H12A119.7
C3—N5—C17121.36 (9)C13—C12—H12A119.7
C14—N5—C17112.11 (9)C8—C13—C12119.73 (11)
N1—C1—S1122.13 (9)C8—C13—H13A120.1
N1—C1—S2125.35 (9)C12—C13—H13A120.1
S1—C1—S2112.52 (7)N5—C14—C15102.92 (9)
N3—C2—N2118.10 (10)N5—C14—H14A111.2
N3—C2—C5122.66 (10)C15—C14—H14A111.2
N2—C2—C5119.23 (10)N5—C14—H14B111.2
N4—C3—N5117.95 (10)C15—C14—H14B111.2
N4—C3—N3126.56 (10)H14A—C14—H14B109.1
N5—C3—N3115.49 (10)C14—C15—C16102.40 (10)
N4—C4—C5121.46 (10)C14—C15—H15A111.3
N4—C4—C18116.64 (10)C16—C15—H15A111.3
C5—C4—C18121.85 (10)C14—C15—H15B111.3
C4—C5—C2117.07 (10)C16—C15—H15B111.3
C4—C5—S2123.37 (8)H15A—C15—H15B109.2
C2—C5—S2119.38 (9)C17—C16—C15103.02 (9)
C7—C6—S1113.66 (10)C17—C16—H16A111.2
C7—C6—H6A108.8C15—C16—H16A111.2
S1—C6—H6A108.8C17—C16—H16B111.2
C7—C6—H6B108.8C15—C16—H16B111.2
S1—C6—H6B108.8H16A—C16—H16B109.1
H6A—C6—H6B107.7N5—C17—C16103.36 (9)
C6—C7—H7A109.5N5—C17—H17A111.1
C6—C7—H7B109.5C16—C17—H17A111.1
H7A—C7—H7B109.5N5—C17—H17B111.1
C6—C7—H7C109.5C16—C17—H17B111.1
H7A—C7—H7C109.5H17A—C17—H17B109.1
H7B—C7—H7C109.5C4—C18—H18A109.5
C13—C8—C9120.08 (11)C4—C18—H18B109.5
C13—C8—N2121.16 (10)H18A—C18—H18B109.5
C9—C8—N2118.72 (10)C4—C18—H18C109.5
C10—C9—C8119.66 (11)H18A—C18—H18C109.5
C10—C9—H9A120.2H18B—C18—H18C109.5
C1—N1—N2—C241.93 (16)C18—C4—C5—S28.17 (17)
C1—N1—N2—C8168.98 (11)N3—C2—C5—C43.72 (18)
N2—N1—C1—S1178.19 (9)N2—C2—C5—C4175.25 (11)
N2—N1—C1—S21.02 (17)N3—C2—C5—S2171.64 (10)
C6—S1—C1—N18.61 (13)N2—C2—C5—S29.38 (16)
C6—S1—C1—S2170.70 (7)C1—S2—C5—C4147.93 (11)
C5—S2—C1—N133.47 (13)C1—S2—C5—C237.01 (11)
C5—S2—C1—S1147.25 (7)C1—S1—C6—C778.51 (11)
C3—N3—C2—N2178.42 (10)C2—N2—C8—C13127.99 (12)
C3—N3—C2—C52.60 (18)N1—N2—C8—C1320.53 (15)
N1—N2—C2—N3143.21 (11)C2—N2—C8—C954.47 (15)
C8—N2—C2—N33.42 (17)N1—N2—C8—C9157.01 (11)
N1—N2—C2—C535.81 (16)C13—C8—C9—C101.54 (18)
C8—N2—C2—C5177.56 (11)N2—C8—C9—C10179.11 (11)
C4—N4—C3—N5174.47 (11)C8—C9—C10—C111.60 (19)
C4—N4—C3—N35.39 (18)C9—C10—C11—C120.37 (19)
C14—N5—C3—N48.23 (17)C10—C11—C12—C130.94 (18)
C17—N5—C3—N4167.32 (11)C9—C8—C13—C120.25 (18)
C14—N5—C3—N3171.89 (10)N2—C8—C13—C12177.76 (11)
C17—N5—C3—N312.81 (16)C11—C12—C13—C81.00 (18)
C2—N3—C3—N47.60 (18)C3—N5—C14—C15144.67 (11)
C2—N3—C3—N5172.26 (10)C17—N5—C14—C1516.12 (13)
C3—N4—C4—C51.88 (17)N5—C14—C15—C1634.32 (12)
C3—N4—C4—C18179.27 (11)C14—C15—C16—C1740.28 (12)
N4—C4—C5—C26.08 (18)C3—N5—C17—C16170.29 (11)
C18—C4—C5—C2176.66 (12)C14—N5—C17—C169.01 (13)
N4—C4—C5—S2169.08 (9)C15—C16—C17—N530.31 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N4i0.952.623.5630 (15)172
C15—H15B···S2ii0.992.833.6264 (13)138
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H21N5S2
Mr371.52
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.3601 (2), 10.3596 (3), 20.5754 (6)
V3)1781.98 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.43 × 0.34 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.878, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
36558, 6479, 5952
Rint0.042
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.01
No. of reflections6479
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.24
Absolute structureFlack (1983), 2828 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···N4i0.952.623.5630 (15)172
C15—H15B···S2ii0.992.833.6264 (13)138
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+2, z1/2.
 

Acknowledgements

The authors acknowledge Islamic Azad University, Ahvaz Branch, for financial support.

References

First citationBakavoli, M., Nikpour, M. & Rahimizadeh, M. (2006). Phosphorus Sulfur Silicon Relat. Elem., 180, 2265–2268.  Web of Science CrossRef Google Scholar
First citationBakavoli, M., Nikpour, M. & Rahimizadeh, M. (2007). J. Heterocycl. Chem. 44, 463–465.  Google Scholar
First citationBakavoli, M., Rahimizadeh, M., Shiri, A., Eshghi, H. & Nikpour, M. (2008). Heterocycles. In the press.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElliott, A. J. (1981). J. Heterocycl. Chem. 18, 799–800.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRahimizadeh, M., Heravi, M. M. & Malekan, A. (1997). Indian J. Heterocycl. Chem. 6, 223–224.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds