organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl-4-[(E)-2-methyl­benzyl­­idene­amino]-1H-1,2,4-triazole-5(4H)-thione

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 25 June 2008; accepted 30 June 2008; online 5 July 2008)

Crystals of the title compound, C12H14N4S, were obtained from a condensation reaction of 4-amino-3-ethyl-1H-1,2,4-triazole-5(4H)-thione and 2-methyl­benzaldehyde. In the mol­ecular structure, there is a short N=C double bond [1.255 (2) Å], and the benzene and triazole rings are located on opposite sites of this double bond. The two rings are approximately parallel to each other, the dihedral angle being 1.75 (11)°. A partially overlapped arrangement is observed between the nearly parallel triazole and benzene rings of adjacent mol­ecules; the perpendicular distance of the centroid of the triazole ring from the benzene ring is 3.482 Å, indicating the existence of ππ stacking in the crystal structure.

Related literature

For general background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Shan et al. (2003[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.]). For related structures, see: Fan et al. (2008[Fan, Z., Shan, S., Wang, S.-H. & Wang, W.-L. (2008). Acta Cryst. E64, o1341.]); Shan et al. (2004[Shan, S., Fan, Z., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o2473-o2475.], 2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1153.]). For the thickness of the aromatic ring, see: Cotton & Wilkinson (1972[Cotton, F. A. & Wilkinson, G. (1972). Advances in Inorganic Chemistry, p. 120. New York: John Wiley & Sons.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N4S

  • Mr = 246.33

  • Monoclinic, P 21 /n

  • a = 7.7255 (15) Å

  • b = 15.411 (3) Å

  • c = 10.685 (2) Å

  • β = 101.032 (12)°

  • V = 1248.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 (2) K

  • 0.32 × 0.28 × 0.24 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 12354 measured reflections

  • 2860 independent reflections

  • 1777 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.120

  • S = 1.03

  • 2860 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Si 0.93 2.37 3.2899 (19) 169
C5—H5⋯S 0.93 2.54 3.239 (2) 132
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Since some hydrazone derivatives have shown to be potential DNA damaging and mutagenic agents (Okabe et al., 1993), a series of new hydrazone derivatives have been prepared in our laboratory (Shan et al., 2003). As part of the ongoing investigation, the title compound has recently been prepared and its crystal structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The N4—C5 bond distance of 1.255 (2) Å is significantly shorter than CN bond distances found in related hydrazone structures, i.g. 1.295 (2) Å in (E)-3-methoxyacetophenone 4-nitrophenylhydrazone (Fan et al., 2008), 1.2977 (18) Å in (E)-2-furyl methyl ketone 2,4-dinitrophenylhydrazone (Shan et al., 2008) and 1.293 (2) Å in benzylideneacetone 2,4-dinitrophenylhydrazone (Shan et al., 2004). The benzene and triazole rings are located on the opposite sites of the N4C5 double bond, the molecule assumes an E-configuration.

The molecule displays a nearly coplanar structure except for methyl H atoms, the maximum atomic deviation for non-H atom is 0.1457 (18) Å (N4), and the atomic deviations for ehtyl C3 and C4 atoms are 0.011 (2) and 0.037 (2) Å, respectively. The methine group is linked to the triazolethione via intramolecular C5—H5···S hydrogen bonding (Fig. 1 and Table 1). The adjacent molecules are linked together with N1—H1N···S hydrogen bonding (Table 1), forming the centro-symmetric supramolecular dimer.

A partially overlapped arrangement is observed between the nearly parallel triazole ring and benzene ring of the adjacent molecule [dihedral angle 1.75 (11)°] (Fig. 2), the perpendicular distance of the centroid of the N3-triazole ring on the C6ii-benzene ring is 3.482 Å and the perpendicular distance of the centroid of the C6ii-benzene ring on the N3-triazole ring is 3.504 Å [symmetry code: (ii) 1 + x, y, z], these are significantly shorter than the van der Waals thickness of the aromatic ring (3.7 Å; Cotton & Wilkinson, 1972) and suggest the existence of π-π stacking in the crystal structure.

Related literature top

For general background, see: Okabe et al. (1993); Shan et al. (2003). For related structures, see: Fan et al. (2008); Shan et al. (2004, 2008). For the thickness of the aromatic ring, see: Cotton & Wilkinson (1972).

Experimental top

4-Amino-3-ethyl-1H-1,2,4-triazole-5(4H)-thione (0.29 g, 2 mmol) was dissolved in ethanol (25 ml), then acetic acid (1 ml) was added slowly to the ethanol solution with stirring. The solution was heated at 333 K for several minutes until the solution cleared. 2-Methylbenzaldehyde (0.24 g, 2 mmol) was then dropped slowly into the solution, and the mixture was refluxed for 5 h. After the solution had cooled to room temperature yellow powder crystals appeared. The powder crystals were separated and washed with water three times. Single crystals of the title compound were obtained by recrystallization from an absolute ethanol solution.

Refinement top

H atom bonded to N atom was located in a difference Fourier map and refined as riding in its as-found relative position with Uiso(H) = 1.5Ueq(N). Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids for non-H atoms. Dashed line indicates hydrogen bonding.
[Figure 2] Fig. 2. A diagram showing π-π stacking between aromatic rings [symmetry code: (ii) 1 + x, y, z].
(E)-3-Ethyl-4-(2-methylbenzylideneamino)-1H-1,2,4-triazole- 5(4H)-thione top
Crystal data top
C12H14N4SF(000) = 520
Mr = 246.33Dx = 1.310 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4278 reflections
a = 7.7255 (15) Åθ = 2.8–24.5°
b = 15.411 (3) ŵ = 0.24 mm1
c = 10.685 (2) ÅT = 295 K
β = 101.032 (12)°Prism, yellow
V = 1248.7 (4) Å30.32 × 0.28 × 0.24 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1777 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 27.6°, θmin = 2.6°
Detector resolution: 10.00 pixels mm-1h = 910
ω scansk = 2016
12354 measured reflectionsl = 1313
2860 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.2633P]
where P = (Fo2 + 2Fc2)/3
2860 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H14N4SV = 1248.7 (4) Å3
Mr = 246.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7255 (15) ŵ = 0.24 mm1
b = 15.411 (3) ÅT = 295 K
c = 10.685 (2) Å0.32 × 0.28 × 0.24 mm
β = 101.032 (12)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1777 reflections with I > 2σ(I)
12354 measured reflectionsRint = 0.061
2860 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
2860 reflectionsΔρmin = 0.21 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.70986 (7)0.00644 (3)0.39484 (6)0.0542 (2)
N10.9437 (2)0.12184 (11)0.47565 (18)0.0453 (5)
H1N1.03200.08260.50950.068*
N20.9697 (2)0.20996 (11)0.47450 (18)0.0449 (5)
N30.70093 (19)0.17368 (10)0.37970 (15)0.0356 (4)
N40.5343 (2)0.19429 (11)0.31007 (17)0.0424 (5)
C10.7829 (3)0.09601 (13)0.4175 (2)0.0388 (5)
C20.8200 (3)0.24045 (13)0.4152 (2)0.0387 (5)
C30.7750 (3)0.33278 (13)0.3886 (2)0.0486 (6)
H3A0.67600.34820.42790.058*
H3B0.73910.34080.29730.058*
C40.9288 (3)0.39305 (14)0.4383 (3)0.0627 (7)
H4A0.96240.38680.52910.094*
H4B0.89420.45200.41800.094*
H4C1.02700.37840.39910.094*
C50.4118 (3)0.13985 (14)0.3022 (2)0.0443 (6)
H50.43300.08560.34020.053*
C60.2346 (3)0.16241 (14)0.2325 (2)0.0412 (5)
C70.1079 (3)0.09783 (15)0.1958 (2)0.0484 (6)
C80.0589 (3)0.1238 (2)0.1313 (2)0.0631 (7)
H80.14540.08200.10640.076*
C90.0980 (3)0.2091 (2)0.1040 (3)0.0688 (8)
H90.21050.22450.06180.083*
C100.0279 (3)0.27235 (18)0.1386 (2)0.0621 (7)
H100.00190.33020.11820.074*
C110.1935 (3)0.24901 (15)0.2038 (2)0.0502 (6)
H110.27830.29160.22880.060*
C120.1452 (3)0.00349 (16)0.2212 (3)0.0700 (8)
H12A0.22460.01690.16870.105*
H12B0.03690.02870.20190.105*
H12C0.19780.00450.30940.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0374 (3)0.0352 (3)0.0829 (5)0.0002 (2)0.0066 (3)0.0011 (3)
N10.0309 (9)0.0361 (9)0.0641 (12)0.0015 (7)0.0027 (8)0.0017 (9)
N20.0339 (9)0.0374 (10)0.0598 (12)0.0031 (7)0.0003 (8)0.0001 (9)
N30.0273 (8)0.0326 (8)0.0443 (10)0.0001 (7)0.0000 (7)0.0000 (7)
N40.0305 (9)0.0416 (10)0.0507 (11)0.0016 (8)0.0031 (8)0.0013 (8)
C10.0304 (10)0.0400 (11)0.0444 (12)0.0025 (8)0.0028 (9)0.0000 (9)
C20.0333 (11)0.0368 (11)0.0449 (12)0.0042 (8)0.0042 (9)0.0016 (9)
C30.0468 (12)0.0380 (12)0.0586 (14)0.0010 (10)0.0044 (11)0.0004 (11)
C40.0662 (16)0.0398 (13)0.0762 (18)0.0139 (11)0.0015 (14)0.0007 (12)
C50.0336 (11)0.0393 (11)0.0568 (14)0.0026 (9)0.0011 (10)0.0017 (10)
C60.0297 (10)0.0505 (12)0.0423 (12)0.0011 (9)0.0042 (9)0.0005 (10)
C70.0349 (11)0.0594 (15)0.0493 (14)0.0029 (10)0.0042 (10)0.0021 (11)
C80.0336 (12)0.090 (2)0.0625 (17)0.0080 (13)0.0014 (12)0.0046 (15)
C90.0353 (13)0.104 (2)0.0637 (17)0.0157 (15)0.0003 (12)0.0089 (16)
C100.0513 (14)0.0725 (17)0.0615 (16)0.0261 (13)0.0086 (13)0.0125 (14)
C110.0413 (12)0.0545 (14)0.0538 (14)0.0100 (10)0.0069 (11)0.0033 (11)
C120.0550 (15)0.0620 (17)0.089 (2)0.0124 (13)0.0029 (14)0.0045 (15)
Geometric parameters (Å, º) top
S—C11.679 (2)C5—C61.469 (3)
N1—C11.338 (2)C5—H50.9300
N1—N21.373 (2)C6—C111.393 (3)
N1—H1N0.9314C6—C71.399 (3)
N2—C21.296 (2)C7—C81.398 (3)
N3—C11.378 (2)C7—C121.497 (3)
N3—C21.384 (2)C8—C91.369 (4)
N3—N41.395 (2)C8—H80.9300
N4—C51.255 (2)C9—C101.376 (4)
C2—C31.479 (3)C9—H90.9300
C3—C41.522 (3)C10—C111.382 (3)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700C11—H110.9300
C4—H4A0.9600C12—H12A0.9600
C4—H4B0.9600C12—H12B0.9600
C4—H4C0.9600C12—H12C0.9600
C1—N1—N2114.48 (16)N4—C5—H5120.2
C1—N1—H1N122.2C6—C5—H5120.2
N2—N1—H1N123.2C11—C6—C7120.14 (19)
C2—N2—N1104.15 (15)C11—C6—C5119.32 (19)
C1—N3—C2108.74 (15)C7—C6—C5120.53 (19)
C1—N3—N4132.83 (15)C8—C7—C6117.7 (2)
C2—N3—N4118.30 (15)C8—C7—C12119.6 (2)
C5—N4—N3119.38 (17)C6—C7—C12122.71 (19)
N1—C1—N3102.21 (16)C9—C8—C7121.7 (2)
N1—C1—S127.10 (15)C9—C8—H8119.2
N3—C1—S130.66 (14)C7—C8—H8119.2
N2—C2—N3110.40 (17)C8—C9—C10120.5 (2)
N2—C2—C3126.69 (18)C8—C9—H9119.8
N3—C2—C3122.91 (17)C10—C9—H9119.8
C2—C3—C4112.41 (18)C9—C10—C11119.3 (2)
C2—C3—H3A109.1C9—C10—H10120.3
C4—C3—H3A109.1C11—C10—H10120.3
C2—C3—H3B109.1C10—C11—C6120.7 (2)
C4—C3—H3B109.1C10—C11—H11119.6
H3A—C3—H3B107.9C6—C11—H11119.6
C3—C4—H4A109.5C7—C12—H12A109.5
C3—C4—H4B109.5C7—C12—H12B109.5
H4A—C4—H4B109.5H12A—C12—H12B109.5
C3—C4—H4C109.5C7—C12—H12C109.5
H4A—C4—H4C109.5H12A—C12—H12C109.5
H4B—C4—H4C109.5H12B—C12—H12C109.5
N4—C5—C6119.54 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Si0.932.373.2899 (19)169
C5—H5···S0.932.543.239 (2)132
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H14N4S
Mr246.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.7255 (15), 15.411 (3), 10.685 (2)
β (°) 101.032 (12)
V3)1248.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.32 × 0.28 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12354, 2860, 1777
Rint0.061
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.03
No. of reflections2860
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Si0.932.373.2899 (19)169
C5—H5···S0.932.543.239 (2)132
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (grant No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCotton, F. A. & Wilkinson, G. (1972). Advances in Inorganic Chemistry, p. 120. New York: John Wiley & Sons.  Google Scholar
First citationFan, Z., Shan, S., Wang, S.-H. & Wang, W.-L. (2008). Acta Cryst. E64, o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Fan, Z., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o2473–o2475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds