organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S,NS)-N-Allyl-N-benzyl-1-hydr­­oxy-3-(4-hy­droxy­phen­yl)-N-methyl­propan-2-aminium bromide

aDepartment of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, bChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China, and cChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
*Correspondence e-mail: hbwuhf@yahoo.com.cn,

(Received 30 June 2008; accepted 23 July 2008; online 31 July 2008)

The title compound, C20H26NO2+·Br, is an N-chiral quaternary ammonium salt synthesized from (2S*)-N-benzyl-N-methyl­tyrosine methyl ester. The dihedral angle between the phenyl ring and the benzene ring is 11.61 (19)°. In the crystal structure, the allyl group is disordered over two positions with site occupancy factors of ca 0.8 and 0.2. The bromide anion links to the quaternary ammonium cations via O—H⋯Br hydrogen bonding. An intramolecular O—H⋯Br hydrogen bond is also observed.

Related literature

For general background, see: Maruoka & Ooi (2003[Maruoka, K. & Ooi, T. (2003). Chem. Rev. 103, 3013-3028.]); Ooi & Maruoka (2007[Ooi, A. & Maruoka, K. (2007). Angew. Chem. Int. Ed. 46, 4222-4266.]). For a related structure, see: Tayama & Tanaka (2007[Tayama, E. & Tanaka, H. (2007). Tetrahedron Lett. 48, 4183-4185.]). For synthesis, see: White & Konopelski (2005[White, K. N. & Konopelski, J. P. (2005). Org. Lett. 7, 4111-4112.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26NO2+·Br

  • Mr = 392.33

  • Orthorhombic, P 21 21 21

  • a = 10.3716 (10) Å

  • b = 12.1566 (10) Å

  • c = 15.6790 (16) Å

  • V = 1976.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.09 mm−1

  • T = 293 (2) K

  • 0.45 × 0.43 × 0.40 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.406, Tmax = 0.433

  • 18872 measured reflections

  • 4524 independent reflections

  • 2606 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.211

  • S = 1.00

  • 4524 reflections

  • 225 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.69 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1949 Friedel pairs

  • Flack parameter: 0.009 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯Br1 0.82 2.43 3.231 (4) 167
O2—H2O⋯Br1i 0.82 2.38 3.192 (5) 171
Symmetry code: (i) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As an important class of asymmetric catalysts of phase-transfer catalysts, chiral quaternary ammonium salts show great application in asymmetric organic synthesis (Maruoka & Ooi, 2003; Ooi & Maruoka, 2007). The title compound is a N-chiral quaternary ammonium salt (N-CQAS), we present here its structure.

The molecular structure is shown in Fig. 1. The quaternary ammonium cation displays an extended structure, the C14—N1—C8—C7 torsion angle is 179.3 (5)°. The terminal C1-benzene and C15-phenyl rings are nearly parallel to each other [dihedral angle 11.61 (19)°], and approximately perpendicular to the central C7/C6/N1/C14 mean plane with dihedral angles of 85.1 (3) and 88.8 (4)°, respectively. Bond lengths and angles agree with those found in a reported N-chiral quaternary ammonium salt (Tayama & Tanaka, 2007).

In the crystal structure the Br- anion links with the quaternary ammonium cations via O—H···Br hydrogen bonding (Table 1), to form the one dimensional supra-molecular structure along the b axis (Fig. 2).

Related literature top

For general background, see: Maruoka & Ooi (2003); Ooi & Maruoka (2007). For a related structure, see: Tayama & Tanaka (2007). For synthesis, see: White & Konopelski (2005).

Experimental top

(2S*)-N-Benzyl-N-methyltyrosine methyl ester (White & Konopelski, 2005) (1 mmol) was reduced by lithium aluminium hydride (1 mmol) to afford (2S*)-N-Benzyl-N-methyl-2-amino-3-(4-hydroxyphenyl)propan-1-ol, which was then dissolved in absolute acetonitrile (5 ml), and allyl bromide (2 mmol) was added. The mixture was heated to reflux for 42 h. After being cooled to room temperature, the excess allyl bromide and acetonitrile were removed under reduced pressure. The residue was purified by flash chromatography eluted with ethyl acetate/methanol (8:1) to afford the diastereomeric mixture of the N-CQAS with yields (90%). The mixture was recrystallized from ethanol to afford the single crystals of the title compound. Yield (41%).

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,O). The terminal carbon (C13) atom of the allyl group is disordered over two sites, occupancies were refined and converged to 0.778:0.222.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at the 30% probability level. The minor disordered component has been omitted for clarity.
[Figure 2] Fig. 2. The unit cell packing diagram of the title compound. Dashed lines indicate hydrogen bonding.
(2S*,NS*)-N-Allyl-N-benzyl-1-hydroxy-3- (4-hydroxyphenyl)-N-methylpropan-2-aminium bromide top
Crystal data top
C20H26NO2+·BrDx = 1.318 Mg m3
Mr = 392.33Melting point: 449(5) K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10762 reflections
a = 10.3716 (10) Åθ = 3.1–27.4°
b = 12.1566 (10) ŵ = 2.09 mm1
c = 15.6790 (16) ÅT = 293 K
V = 1976.9 (3) Å3Block, colourless
Z = 40.45 × 0.43 × 0.40 mm
F(000) = 816
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4524 independent reflections
Radiation source: Rotating anode2606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.406, Tmax = 0.434k = 1515
18872 measured reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.128P)2 + 0.338P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.211(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.89 e Å3
4524 reflectionsΔρmin = 0.69 e Å3
225 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.058 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1949 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.009 (19)
Crystal data top
C20H26NO2+·BrV = 1976.9 (3) Å3
Mr = 392.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.3716 (10) ŵ = 2.09 mm1
b = 12.1566 (10) ÅT = 293 K
c = 15.6790 (16) Å0.45 × 0.43 × 0.40 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4524 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2606 reflections with I > 2σ(I)
Tmin = 0.406, Tmax = 0.434Rint = 0.057
18872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.211Δρmax = 0.89 e Å3
S = 1.00Δρmin = 0.69 e Å3
4524 reflectionsAbsolute structure: Flack (1983), with 1949 Friedel pairs
225 parametersAbsolute structure parameter: 0.009 (19)
2 restraints
Special details top

Experimental. IR (KBr): 3297, 3034, 1612, 1515, 1464, 1264, 1058, 850 (cm-1); 13CNMR (150 MHz, DMSO-d6, δ, p.p.m.): 156.8, 133.7, 130.8, 129.4, 128.5, 127.4, 126.9, 126.8, 116.0, 73.9, 63.7, 62.9, 56.6, 47.0, 29.6.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.63828 (7)0.06624 (5)0.31732 (5)0.0766 (3)
O10.6728 (4)0.3120 (4)0.3923 (3)0.0748 (12)
H1O0.67640.24790.37620.090*
O20.7918 (4)0.8588 (4)0.3897 (4)0.0863 (14)
H2O0.74520.90910.37360.104*
N10.3651 (4)0.3213 (4)0.4017 (3)0.0552 (10)
C10.7120 (6)0.5784 (6)0.4504 (5)0.0739 (17)
H10.75570.51510.46680.089*
C20.7823 (6)0.6731 (5)0.4309 (5)0.0739 (18)
H20.87180.67260.43340.089*
C30.7171 (6)0.7673 (5)0.4080 (4)0.0680 (16)
C40.5853 (6)0.7668 (5)0.4011 (4)0.0696 (16)
H40.54200.82960.38300.083*
C50.5173 (6)0.6733 (5)0.4210 (5)0.0667 (16)
H50.42780.67470.41780.080*
C60.5784 (5)0.5767 (5)0.4459 (4)0.0595 (13)
C70.5053 (7)0.4747 (5)0.4658 (4)0.0666 (15)
H7A0.42820.49360.49760.080*
H7B0.55780.42710.50130.080*
C80.4670 (5)0.4131 (4)0.3849 (4)0.0538 (12)
H80.42610.46700.34710.065*
C90.5867 (5)0.3719 (5)0.3389 (4)0.0576 (13)
H9A0.56030.32510.29190.069*
H9B0.63220.43450.31490.069*
C100.4099 (6)0.2377 (5)0.4638 (4)0.0606 (13)
H10A0.33930.19050.47900.073*
H10B0.44190.27380.51400.073*
H10C0.47750.19470.43860.073*
C110.2426 (6)0.3716 (6)0.4391 (4)0.0707 (16)
H11A0.17740.31470.44350.085*
H11B0.26110.39740.49640.085*
C120.1902 (7)0.4635 (6)0.3892 (5)0.092 (2)0.778 (18)
H120.19730.45940.33020.111*0.778 (18)
C130.1339 (16)0.5511 (10)0.4216 (8)0.132 (6)0.778 (18)
H13A0.12500.55810.48040.158*0.778 (18)
H13B0.10300.60600.38570.158*0.778 (18)
C12'0.1902 (7)0.4635 (6)0.3892 (5)0.092 (2)0.222 (18)
H12'0.23940.50640.35250.111*0.222 (18)
C13'0.0657 (12)0.479 (5)0.402 (3)0.132 (6)0.222 (18)
H13C0.02120.43310.43960.158*0.222 (18)
H13D0.02250.53460.37360.158*0.222 (18)
C140.3330 (5)0.2665 (5)0.3165 (4)0.0644 (14)
H14A0.30900.32350.27620.077*
H14B0.41060.23170.29500.077*
C150.2279 (6)0.1823 (6)0.3179 (5)0.0728 (17)
C160.2603 (7)0.0727 (7)0.3287 (5)0.086 (2)
H160.34590.05290.33720.103*
C170.1623 (10)0.0099 (9)0.3266 (6)0.111 (3)
H170.18200.08390.33460.133*
C180.0386 (10)0.0242 (12)0.3125 (7)0.121 (4)
H180.02630.02850.31140.145*
C190.0055 (9)0.1317 (14)0.3001 (7)0.119 (4)
H190.07990.15140.29020.143*
C200.1000 (6)0.2092 (8)0.3026 (5)0.093 (2)
H200.07810.28260.29380.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0760 (4)0.0657 (4)0.0881 (5)0.0026 (3)0.0014 (4)0.0123 (3)
O10.066 (2)0.060 (2)0.098 (3)0.004 (2)0.012 (2)0.007 (2)
O20.069 (3)0.062 (2)0.127 (4)0.015 (2)0.000 (3)0.015 (3)
N10.048 (2)0.066 (3)0.051 (2)0.006 (2)0.003 (2)0.0028 (19)
C10.068 (4)0.060 (4)0.093 (5)0.006 (3)0.008 (3)0.002 (4)
C20.061 (3)0.055 (3)0.105 (5)0.001 (3)0.007 (3)0.008 (3)
C30.066 (3)0.057 (3)0.081 (4)0.014 (3)0.001 (3)0.001 (3)
C40.068 (3)0.057 (3)0.083 (4)0.001 (3)0.008 (3)0.000 (3)
C50.061 (3)0.059 (3)0.081 (4)0.007 (3)0.002 (3)0.004 (3)
C60.065 (3)0.048 (3)0.065 (3)0.005 (3)0.002 (3)0.004 (3)
C70.076 (4)0.059 (3)0.065 (4)0.007 (3)0.002 (3)0.002 (3)
C80.055 (3)0.053 (3)0.054 (3)0.009 (2)0.001 (2)0.007 (2)
C90.055 (3)0.054 (3)0.064 (3)0.002 (2)0.003 (2)0.001 (2)
C100.067 (3)0.055 (3)0.060 (3)0.012 (3)0.001 (3)0.012 (2)
C110.060 (3)0.087 (4)0.065 (4)0.011 (3)0.009 (3)0.003 (3)
C120.063 (4)0.115 (7)0.099 (5)0.019 (4)0.010 (4)0.011 (5)
C130.178 (14)0.128 (11)0.089 (7)0.077 (12)0.012 (8)0.028 (7)
C12'0.063 (4)0.115 (7)0.099 (5)0.019 (4)0.010 (4)0.011 (5)
C13'0.178 (14)0.128 (11)0.089 (7)0.077 (12)0.012 (8)0.028 (7)
C140.057 (3)0.086 (4)0.050 (3)0.013 (3)0.000 (3)0.004 (3)
C150.059 (3)0.097 (5)0.062 (3)0.020 (3)0.007 (3)0.014 (4)
C160.071 (4)0.100 (5)0.086 (5)0.031 (4)0.010 (3)0.024 (5)
C170.122 (8)0.113 (7)0.097 (6)0.055 (6)0.026 (5)0.032 (5)
C180.093 (6)0.193 (12)0.076 (5)0.070 (7)0.017 (5)0.032 (7)
C190.066 (5)0.203 (11)0.089 (7)0.037 (6)0.002 (4)0.040 (8)
C200.059 (3)0.139 (7)0.080 (5)0.018 (4)0.012 (3)0.003 (5)
Geometric parameters (Å, º) top
O1—C91.425 (7)C10—H10A0.9600
O1—H1O0.8200C10—H10B0.9600
O2—C31.385 (7)C10—H10C0.9600
O2—H2O0.8200C11—C121.468 (10)
N1—C101.482 (7)C11—H11A0.9700
N1—C111.527 (7)C11—H11B0.9700
N1—C141.531 (7)C12—C131.317 (3)
N1—C81.560 (6)C12—H120.9300
C1—C61.387 (9)C13—H13A0.9300
C1—C21.396 (10)C13—H13B0.9300
C1—H10.9300C13'—H13C0.9300
C2—C31.377 (9)C13'—H13D0.9300
C2—H20.9300C14—C151.495 (8)
C3—C41.372 (9)C14—H14A0.9700
C4—C51.373 (9)C14—H14B0.9700
C4—H40.9300C15—C161.384 (11)
C5—C61.391 (9)C15—C201.388 (10)
C5—H50.9300C16—C171.429 (10)
C6—C71.487 (8)C16—H160.9300
C7—C81.525 (8)C17—C181.367 (17)
C7—H7A0.9700C17—H170.9300
C7—H7B0.9700C18—C191.365 (17)
C8—C91.520 (8)C18—H180.9300
C8—H80.9800C19—C201.361 (13)
C9—H9A0.9700C19—H190.9300
C9—H9B0.9700C20—H200.9300
C9—O1—H1O109.5N1—C10—H10A109.5
C3—O2—H2O109.5N1—C10—H10B109.5
C10—N1—C11106.5 (4)H10A—C10—H10B109.5
C10—N1—C14110.1 (5)N1—C10—H10C109.5
C11—N1—C14109.2 (4)H10A—C10—H10C109.5
C10—N1—C8112.9 (4)H10B—C10—H10C109.5
C11—N1—C8110.0 (4)C12—C11—N1114.1 (5)
C14—N1—C8108.1 (4)C12—C11—H11A108.7
C6—C1—C2121.5 (7)N1—C11—H11A108.7
C6—C1—H1119.2C12—C11—H11B108.7
C2—C1—H1119.2N1—C11—H11B108.7
C3—C2—C1119.1 (6)H11A—C11—H11B107.6
C3—C2—H2120.5C13—C12—C11125.0 (9)
C1—C2—H2120.5C13—C12—H12117.5
C4—C3—C2120.4 (6)C11—C12—H12117.5
C4—C3—O2123.0 (6)C12—C13—H13A120.0
C2—C3—O2116.5 (6)C12—C13—H13B120.0
C3—C4—C5119.8 (6)H13A—C13—H13B120.0
C3—C4—H4120.1H13C—C13'—H13D120.0
C5—C4—H4120.1C15—C14—N1116.3 (5)
C4—C5—C6121.9 (6)C15—C14—H14A108.2
C4—C5—H5119.0N1—C14—H14A108.2
C6—C5—H5119.0C15—C14—H14B108.2
C1—C6—C5117.1 (6)N1—C14—H14B108.2
C1—C6—C7120.8 (6)H14A—C14—H14B107.4
C5—C6—C7122.1 (5)C16—C15—C20118.7 (7)
C6—C7—C8111.6 (5)C16—C15—C14118.9 (6)
C6—C7—H7A109.3C20—C15—C14122.2 (7)
C8—C7—H7A109.3C15—C16—C17120.1 (8)
C6—C7—H7B109.3C15—C16—H16120.0
C8—C7—H7B109.3C17—C16—H16120.0
H7A—C7—H7B108.0C18—C17—C16117.2 (10)
C9—C8—C7110.1 (5)C18—C17—H17121.4
C9—C8—N1113.5 (4)C16—C17—H17121.4
C7—C8—N1112.8 (4)C19—C18—C17123.4 (9)
C9—C8—H8106.7C19—C18—H18118.3
C7—C8—H8106.7C17—C18—H18118.3
N1—C8—H8106.7C20—C19—C18118.5 (10)
O1—C9—C8113.6 (5)C20—C19—H19120.7
O1—C9—H9A108.8C18—C19—H19120.7
C8—C9—H9A108.8C19—C20—C15122.0 (10)
O1—C9—H9B108.8C19—C20—H20119.0
C8—C9—H9B108.8C15—C20—H20119.0
H9A—C9—H9B107.7
C6—C1—C2—C31.0 (12)C7—C8—C9—O151.2 (6)
C1—C2—C3—C42.6 (12)N1—C8—C9—O176.3 (6)
C1—C2—C3—O2179.8 (7)C10—N1—C11—C12175.1 (6)
C2—C3—C4—C53.1 (12)C14—N1—C11—C1266.1 (7)
O2—C3—C4—C5179.5 (6)C8—N1—C11—C1252.5 (7)
C3—C4—C5—C62.0 (11)N1—C11—C12—C13144.3 (12)
C2—C1—C6—C50.1 (11)C10—N1—C14—C1561.4 (6)
C2—C1—C6—C7179.2 (6)C11—N1—C14—C1555.1 (7)
C4—C5—C6—C10.4 (10)C8—N1—C14—C15174.8 (5)
C4—C5—C6—C7178.7 (6)N1—C14—C15—C1693.4 (8)
C1—C6—C7—C898.8 (8)N1—C14—C15—C2091.5 (9)
C5—C6—C7—C880.4 (8)C20—C15—C16—C172.0 (12)
C6—C7—C8—C965.0 (6)C14—C15—C16—C17177.3 (7)
C6—C7—C8—N1167.1 (5)C15—C16—C17—C181.0 (13)
C10—N1—C8—C967.4 (6)C16—C17—C18—C190.4 (17)
C11—N1—C8—C9173.9 (4)C17—C18—C19—C200.6 (18)
C14—N1—C8—C954.6 (6)C18—C19—C20—C150.5 (16)
C10—N1—C8—C758.7 (6)C16—C15—C20—C191.7 (14)
C11—N1—C8—C760.0 (6)C14—C15—C20—C19176.9 (8)
C14—N1—C8—C7179.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Br10.822.433.231 (4)167
O2—H2O···Br1i0.822.383.192 (5)171
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H26NO2+·Br
Mr392.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.3716 (10), 12.1566 (10), 15.6790 (16)
V3)1976.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.45 × 0.43 × 0.40
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.406, 0.434
No. of measured, independent and
observed [I > 2σ(I)] reflections
18872, 4524, 2606
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.211, 1.00
No. of reflections4524
No. of parameters225
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.69
Absolute structureFlack (1983), with 1949 Friedel pairs
Absolute structure parameter0.009 (19)

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Br10.822.433.231 (4)167.1
O2—H2O···Br1i0.822.383.192 (5)171.4
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant No. 20672108).

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMaruoka, K. & Ooi, T. (2003). Chem. Rev. 103, 3013–3028.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOoi, A. & Maruoka, K. (2007). Angew. Chem. Int. Ed. 46, 4222–4266.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTayama, E. & Tanaka, H. (2007). Tetrahedron Lett. 48, 4183–4185.  Web of Science CSD CrossRef CAS Google Scholar
First citationWhite, K. N. & Konopelski, J. P. (2005). Org. Lett. 7, 4111–4112.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds