organic compounds
1-Phenyl-2-(1H-1,2,4-triazol-1-yl)ethanone
aZonguldak Karaelmas University, Department of Chemistry, 67100 Zonguldak, Turkey, bSouthampton University, Department of Chemistry, Southampton SO17 1BJ, England, and cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the molecule of the title compound, C10H9N3O, the triazole and phenyl rings are nearly perpendicular to each other, with a dihedral angle of 88.72 (4)°. In the intermolecular C—H⋯O and C—H⋯N hydrogen bonds link the molecules. There are C—H⋯π contacts between the 1,2,4-triazole rings, and between the phenyl and 1,2,4-triazole rings, and there is a weak π–π contact between the 1,2,4-triazole and phenyl rings [centroid-to-centroid distance = 4.547 (1) Å].
Related literature
For general background, see: Holla et al. (1996); Sengupta et al. (1978); Paulvannan et al. (2001); Sui et al. (1998); Bodey (1992). For related literature, see: Caira et al. (2004); Peeters et al. (1996); Özel Güven, Tahtacı et al. (2008); Özel Güven, Erdoğan et al. (2008). For synthesis, see: Liu et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536808023258/xu2439sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808023258/xu2439Isup2.hkl
The title compound, (I), was synthesized by the reaction of 1H-1,2,4-triazole with 2-bromo-1-phenylethanone (Liu et al., 2006). To a vigorous stirred suspension of 1H-1,2,4-triazole (1105 mg, 16 mmol) and 2-bromo-1-phenylethanone (1990 mg, 10 mmol) in acetone (6 ml) was added triethylamine (2.2 ml) dropwise over a period of 1 h below 273 K, and the reaction mixture was stirred for another 30 min at room temperature. Then the mixture was filtered to remove triethylamine hydrobromide salt, the precipitate was washed with acetone, and the filtrate was evaporated under reduced pressure. The residue was dissolved in chloroform, and washed with water. After evaporation of chloroform, the yellow solid was obtained and crystallized from iso-propanol to obtain the title compound as colorless crystals (yield; 937 mg, 50%).
H atoms were located in difference syntheses and refined isotropically [C—H = 0.954 (18)–1.007 (17) Å, Uiso(H) = 0.030 (4)–0.046 (5) Å2].
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines. |
C10H9N3O | F(000) = 784 |
Mr = 187.20 | Dx = 1.368 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2395 reflections |
a = 9.3129 (2) Å | θ = 2.9–27.5° |
b = 8.1166 (1) Å | µ = 0.09 mm−1 |
c = 24.0475 (4) Å | T = 120 K |
V = 1817.73 (5) Å3 | Shard, colourless |
Z = 8 | 0.35 × 0.2 × 0.2 mm |
Bruker Nonius KappaCCD diffractometer | 2077 independent reflections |
Radiation source: fine-focus sealed tube | 1736 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
ϕ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −10→9 |
Tmin = 0.968, Tmax = 0.972 | l = −31→31 |
16799 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.060 | All H-atom parameters refined |
wR(F2) = 0.145 | w = 1/[σ2(Fo2) + (0.0862P)2 + 0.1878P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max < 0.001 |
2077 reflections | Δρmax = 0.56 e Å−3 |
164 parameters | Δρmin = −0.55 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.141 (11) |
C10H9N3O | V = 1817.73 (5) Å3 |
Mr = 187.20 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 9.3129 (2) Å | µ = 0.09 mm−1 |
b = 8.1166 (1) Å | T = 120 K |
c = 24.0475 (4) Å | 0.35 × 0.2 × 0.2 mm |
Bruker Nonius KappaCCD diffractometer | 2077 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 1736 reflections with I > 2σ(I) |
Tmin = 0.968, Tmax = 0.972 | Rint = 0.052 |
16799 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.145 | All H-atom parameters refined |
S = 1.17 | Δρmax = 0.56 e Å−3 |
2077 reflections | Δρmin = −0.55 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O | 0.27304 (10) | 0.10771 (12) | 0.46535 (4) | 0.0301 (3) | |
N1 | 0.08642 (12) | 0.25265 (13) | 0.53706 (5) | 0.0237 (3) | |
N2 | 0.04051 (14) | 0.12395 (15) | 0.56849 (5) | 0.0306 (4) | |
N3 | 0.15796 (13) | 0.31174 (16) | 0.62134 (5) | 0.0302 (3) | |
C1 | 0.08629 (16) | 0.16652 (19) | 0.61863 (6) | 0.0302 (4) | |
H1 | 0.0645 (19) | 0.097 (2) | 0.6520 (7) | 0.037 (4)* | |
C2 | 0.15570 (14) | 0.36160 (18) | 0.56884 (6) | 0.0256 (3) | |
H2 | 0.1995 (17) | 0.460 (2) | 0.5535 (6) | 0.030 (4)* | |
C3 | 0.05623 (16) | 0.25908 (17) | 0.47805 (5) | 0.0241 (3) | |
H31 | −0.0374 (19) | 0.210 (2) | 0.4711 (6) | 0.032 (4)* | |
H32 | 0.0550 (18) | 0.373 (2) | 0.4655 (7) | 0.035 (4)* | |
C4 | 0.16946 (13) | 0.17185 (16) | 0.44337 (5) | 0.0229 (3) | |
C5 | 0.14815 (14) | 0.17126 (16) | 0.38202 (5) | 0.0231 (3) | |
C6 | 0.25102 (16) | 0.09475 (17) | 0.34846 (6) | 0.0284 (4) | |
H6 | 0.3339 (19) | 0.048 (2) | 0.3658 (7) | 0.038 (5)* | |
C7 | 0.23147 (18) | 0.08608 (18) | 0.29144 (6) | 0.0333 (4) | |
H7 | 0.3021 (18) | 0.033 (2) | 0.2690 (7) | 0.035 (4)* | |
C8 | 0.11013 (19) | 0.15544 (19) | 0.26698 (6) | 0.0352 (4) | |
H8 | 0.0997 (19) | 0.151 (2) | 0.2269 (9) | 0.046 (5)* | |
C9 | 0.00879 (18) | 0.23382 (18) | 0.29988 (6) | 0.0320 (4) | |
H9 | −0.0794 (18) | 0.281 (2) | 0.2837 (7) | 0.036 (4)* | |
C10 | 0.02666 (15) | 0.24132 (16) | 0.35721 (6) | 0.0263 (4) | |
H10 | −0.0483 (18) | 0.296 (2) | 0.3812 (6) | 0.031 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O | 0.0267 (5) | 0.0372 (6) | 0.0263 (5) | 0.0052 (4) | −0.0022 (4) | 0.0031 (4) |
N1 | 0.0264 (6) | 0.0252 (6) | 0.0194 (6) | −0.0012 (4) | 0.0005 (4) | 0.0005 (4) |
N2 | 0.0414 (7) | 0.0283 (6) | 0.0221 (6) | −0.0054 (5) | 0.0016 (5) | 0.0028 (5) |
N3 | 0.0340 (7) | 0.0349 (7) | 0.0216 (6) | −0.0024 (5) | −0.0009 (5) | −0.0004 (5) |
C1 | 0.0385 (8) | 0.0312 (8) | 0.0208 (7) | −0.0012 (6) | 0.0023 (6) | 0.0016 (5) |
C2 | 0.0252 (7) | 0.0295 (7) | 0.0222 (7) | −0.0023 (5) | 0.0005 (5) | −0.0006 (5) |
C3 | 0.0259 (7) | 0.0272 (7) | 0.0191 (6) | 0.0006 (5) | −0.0022 (5) | −0.0005 (5) |
C4 | 0.0226 (6) | 0.0226 (6) | 0.0235 (7) | −0.0033 (5) | 0.0000 (5) | 0.0016 (5) |
C5 | 0.0261 (7) | 0.0221 (7) | 0.0211 (7) | −0.0030 (5) | 0.0002 (5) | 0.0020 (5) |
C6 | 0.0323 (7) | 0.0271 (7) | 0.0259 (7) | 0.0009 (6) | 0.0039 (6) | 0.0032 (5) |
C7 | 0.0434 (9) | 0.0311 (7) | 0.0256 (7) | −0.0007 (7) | 0.0100 (6) | −0.0008 (6) |
C8 | 0.0538 (10) | 0.0320 (8) | 0.0196 (7) | −0.0073 (7) | 0.0006 (6) | 0.0016 (6) |
C9 | 0.0397 (8) | 0.0306 (7) | 0.0258 (7) | −0.0030 (6) | −0.0079 (6) | 0.0031 (5) |
C10 | 0.0279 (7) | 0.0268 (7) | 0.0242 (7) | −0.0008 (5) | −0.0018 (5) | −0.0006 (5) |
O—C4 | 1.2170 (16) | C4—C5 | 1.4884 (17) |
N1—N2 | 1.3585 (16) | C5—C6 | 1.398 (2) |
N1—C2 | 1.3351 (18) | C5—C10 | 1.3998 (19) |
N1—C3 | 1.4476 (16) | C6—H6 | 0.956 (18) |
N2—C1 | 1.3247 (18) | C7—C6 | 1.3851 (19) |
N3—C1 | 1.356 (2) | C7—H7 | 0.954 (18) |
N3—C2 | 1.3258 (18) | C8—C7 | 1.393 (2) |
C1—H1 | 1.001 (17) | C8—C9 | 1.386 (2) |
C2—H2 | 0.972 (17) | C8—H8 | 0.97 (2) |
C3—H31 | 0.974 (18) | C9—H9 | 0.987 (18) |
C3—H32 | 0.973 (17) | C10—C9 | 1.390 (2) |
C4—C3 | 1.5195 (18) | C10—H10 | 1.007 (17) |
C2—N1—N2 | 110.05 (11) | C5—C4—C3 | 116.93 (11) |
C2—N1—C3 | 129.14 (12) | C6—C5—C10 | 119.22 (13) |
N2—N1—C3 | 120.80 (11) | C6—C5—C4 | 118.82 (12) |
C1—N2—N1 | 101.81 (11) | C10—C5—C4 | 121.93 (12) |
C2—N3—C1 | 102.23 (11) | C7—C6—C5 | 120.26 (14) |
N2—C1—N3 | 115.39 (12) | C7—C6—H6 | 121.1 (10) |
N2—C1—H1 | 121.1 (10) | C5—C6—H6 | 118.6 (10) |
N3—C1—H1 | 123.4 (10) | C6—C7—C8 | 120.28 (14) |
N3—C2—N1 | 110.53 (13) | C6—C7—H7 | 119.5 (10) |
N3—C2—H2 | 127.4 (9) | C8—C7—H7 | 120.2 (10) |
N1—C2—H2 | 122.1 (9) | C9—C8—C7 | 119.79 (13) |
N1—C3—C4 | 112.73 (11) | C9—C8—H8 | 121.0 (11) |
N1—C3—H31 | 109.1 (9) | C7—C8—H8 | 119.2 (11) |
C4—C3—H31 | 109.5 (10) | C8—C9—C10 | 120.31 (14) |
N1—C3—H32 | 109.9 (10) | C8—C9—H9 | 121.3 (10) |
C4—C3—H32 | 106.3 (10) | C10—C9—H9 | 118.3 (10) |
H31—C3—H32 | 109.2 (14) | C9—C10—C5 | 120.11 (13) |
O—C4—C5 | 122.34 (12) | C9—C10—H10 | 120.4 (9) |
O—C4—C3 | 120.73 (12) | C5—C10—H10 | 119.5 (9) |
C2—N1—N2—C1 | 0.33 (15) | C3—C4—C5—C6 | 178.95 (12) |
C3—N1—N2—C1 | −178.72 (12) | O—C4—C5—C10 | 178.18 (12) |
N2—N1—C2—N3 | −0.35 (16) | C3—C4—C5—C10 | −2.67 (18) |
C3—N1—C2—N3 | 178.60 (12) | C10—C5—C6—C7 | −1.1 (2) |
C2—N1—C3—C4 | 93.49 (16) | C4—C5—C6—C7 | 177.33 (12) |
N2—N1—C3—C4 | −87.66 (15) | C6—C5—C10—C9 | 0.3 (2) |
N1—N2—C1—N3 | −0.21 (17) | C4—C5—C10—C9 | −178.08 (12) |
C2—N3—C1—N2 | 0.01 (17) | C8—C7—C6—C5 | 0.9 (2) |
C1—N3—C2—N1 | 0.20 (15) | C9—C8—C7—C6 | 0.2 (2) |
O—C4—C3—N1 | −0.91 (18) | C7—C8—C9—C10 | −1.0 (2) |
C5—C4—C3—N1 | 179.92 (11) | C5—C10—C9—C8 | 0.7 (2) |
O—C4—C5—C6 | −0.21 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Oi | 0.970 (16) | 2.449 (15) | 3.2595 (17) | 140.9 (12) |
C3—H32···Oi | 0.973 (16) | 2.489 (16) | 3.2601 (17) | 136.1 (13) |
C8—H8···N3ii | 0.97 (2) | 2.61 (2) | 3.5405 (19) | 160.2 (14) |
C1—H1···Cg2iii | 1.001 (17) | 2.840 (18) | 3.620 (2) | 135.20 (13) |
C2—H2···Cg1iv | 0.972 (17) | 3.013 (16) | 3.829 (2) | 142.42 (12) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) −x+3/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C10H9N3O |
Mr | 187.20 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 120 |
a, b, c (Å) | 9.3129 (2), 8.1166 (1), 24.0475 (4) |
V (Å3) | 1817.73 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.35 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Bruker Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.968, 0.972 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16799, 2077, 1736 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.145, 1.17 |
No. of reflections | 2077 |
No. of parameters | 164 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.56, −0.55 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Oi | 0.970 (16) | 2.449 (15) | 3.2595 (17) | 140.9 (12) |
C3—H32···Oi | 0.973 (16) | 2.489 (16) | 3.2601 (17) | 136.1 (13) |
C8—H8···N3ii | 0.97 (2) | 2.61 (2) | 3.5405 (19) | 160.2 (14) |
C1—H1···Cg2iii | 1.001 (17) | 2.840 (18) | 3.620 (2) | 135.20 (13) |
C2—H2···Cg1iv | 0.972 (17) | 3.013 (16) | 3.829 (2) | 142.42 (12) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) −x+3/2, y+1/2, z. |
Acknowledgements
The authors acknowledge the Zonguldak Karaelmas University Research Fund.
References
Bodey, G. P. (1992). Clin. Infect. Dis. 14, S161–S169. CrossRef PubMed Web of Science Google Scholar
Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Holla, B. S., Poojary, K. N., Kalluraya, B. & Gowda, P. V. (1996). Il Farmaco, 51, 793–799. CAS PubMed Web of Science Google Scholar
Liu, J., Li, L., Dai, H., Liu, Z. & Fang, J. (2006). J. Organomet. Chem. 691, 2686–2690. Web of Science CSD CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1358. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254. Web of Science CSD CrossRef IUCr Journals Google Scholar
Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682. Web of Science CrossRef CAS Google Scholar
Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sengupta, A. K., Bajaj, O. P. & Chandra, U. (1978). J. Indian Chem. Soc. 55, 962–964. CAS Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sui, Z. H., Guan, J. H., Hlasta, D. J., Macielag, M. J., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C. & Barrett, J. F. (1998). Bioorg. Med. Chem. Lett. 8, 1929–1934. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, among antifungal agents, azole derivatives still have an important place in the class of systemic antifungal drugs. 1,2,4-Triazoles are biologically interesting molecules and their chemistry is receiving considerable attention, due to antihypertensive, antifungal and antibacterial properties (Holla et al., 1996; Sengupta et al., 1978; Paulvannan et al., 2001; Sui et al., 1998). The azole antifungals possessing a triazole ring such as fluconazole (Caira et al., 2004) and itraconazole (Peeters et al., 1996) inhibit the synthesis of sterols in fungi by inhibiting cytochrome P-450-dependent 14α-lanosterol demethylase (P-45014DM) and prevent cytochrome P-450 activity (Bodey, 1992). Recently, we reported the crystal structures of 1,2,4-triazole substituted alcohol (Özel Güven, Tahtacı et al., 2008) and benzimidazole substituted ketone (Özel Güven, Erdoğan et al., 2008). We report herein the crystal structure of the 1,2,4-triazole substituted ketone, (I).
In (I), the bond lengths and angles are generally within normal ranges (Fig. 1). The 1,2,4-triazole and benzene rings, A (N1–N3/C1/C2) and B (C5–C10), are, of course, planar and nearly perpendicular to each other with a dihedral angle of A/B = 88.72 (4)°. Atoms C3 and C4 are -0.028 (2) Å and -0.054 (1) Å away from the ring planes of A and B, respectively. The N1—C3—C4 [112.73 (11)°], C3—C4—C5 [116.93 (11)°], O—C4—C3 [120.73 (12)°] and O—C4—C5 [122.34 (12)°] bond angles are highly different from the corresponding values [111.53 (10)°, 109.94 (10)°, 109.53 (11)° and 110.01 (10)°, respectively] in 1-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanol, (II) (Özel Güven, Tahtacı et al., 2008). In ring A, the nearly equivalent N1—N2—C1 [101.81 (11)°] and C1—N3—C2 [102.23 (11)°] bond angles are narrowed, while highly different N3—C2—N1 [110.53 (13)°] and N3—C1—N2 [115.39 (12)°] bond angles are enlarged, as in (II).
In the crystal structure, intermolecular C—H···O and C—H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they seem to be effective in the stabilization of the structure. The C—H···π contacts (Table 1) between the 1,2,4-triazole and the benzene rings and the 1,2,4-triazole rings and a π—π contact between the 1,2,4-triazole and benzene ring systems Cg2···Cg1i [symmetry code: (i) 1 - x, -y, -z, where Cg1 and Cg2 are centroids of the rings (N1–N3/C1/C2) and (C5–C10), respectively] further stabilize the structure, with centroid–centroid distance of 4.547 (1) Å.