organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium benzene­phospho­nate

aShanxi Vocational and Technical College of Biological Applications, Taiyuan 030031, Shanxi, People's Republic of China, bInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 July 2008; accepted 22 July 2008; online 26 July 2008)

In the crystal structure of the title salt, NH4+.[(C6H5)P(O)2(OH)] or NH4+·C6H6O3P, the N and O atoms inter­act via hydrogen bonds to generate a layer motif. The phenyl rings are stacked above and below this layer, sandwiching the hydrogen-bonded layer.

Related literature

For the crystal structure of benzene­phospho­nic acid, see: Weakley (1976[Weakley, T. J. R. (1976). Acta Cryst. B32, 2889-2890.]); Mahmoudkhani & Langer (2002[Mahmoudkhani, A. H. & Langer, V. (2002). J. Mol. Struct. 609, 97-108.]). For the crystal structure of the 1:1 co-crystal of ammonium benzene­phospho­nate and benzene­phospho­nic acid, see: Rao & Vidyasagar (2005[Rao, K. P. & Vidyasagar, K. (2005). Eur. J. Inorg. Chem. pp. 4936-4943.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C6H6O3P

  • Mr = 175.12

  • Orthorhombic, P b c n

  • a = 31.122 (2) Å

  • b = 7.1249 (5) Å

  • c = 7.9441 (5) Å

  • V = 1761.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 (2) K

  • 0.4 × 0.4 × 0.2 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.807, Tmax = 0.947

  • 7880 measured reflections

  • 1565 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.173

  • S = 1.27

  • 1565 reflections

  • 120 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.85 (1) 1.71 (2) 2.526 (3) 163 (4)
N1—H11⋯O2 0.85 (1) 1.91 (1) 2.762 (4) 175 (3)
N1—H12⋯O3ii 0.85 (1) 1.99 (1) 2.814 (4) 164 (3)
N1—H13⋯O1iii 0.85 (1) 2.09 (2) 2.940 (4) 173 (3)
N1—H14⋯O2iv 0.85 (1) 1.93 (1) 2.775 (4) 177 (3)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) [x, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title compound (Scheme I, Fig. 1) is a side-product in the synthesis of 2-methylphenylamidinium phenylphosphinate.

Related literature top

For the crystal structure of benzenephosphonic acid, see: Weakley (1976); Mahmoudkhani & Langer (2002). For the crystal structure of the 1:1 co-crystal of ammonium benzenephosphonate and benzenephosphonic acid, see: Rao & Vidyasagar (2005).

Experimental top

m-Tolunitrile (0.6 ml, 5 mmol) and lithium bis(trimethylsilyl)amide (0.83 g, 5 mmol) were dissolved in THF (30 ml) at 273 K. The yellow solution was cooled to 195 K. Dichlorophenylphosphine (0.7 ml, 5 mmol) was added. The solution was kept at this temperature for an hour before being allowed to react at room temperature overnight. The solvent was removed and the residue extracted with dichloromethane to give a light yellow oil. The oil was dissolved in acetonitrile (30 ml) and 30% hydrogen peroxide (0.56 cm l, 5 mmol) was added. After 24 h, the solution was filtered. Colorless crystals of 2-methylphenylamidinium phenylphosphinate were first obtained; the second crop yielded the title compound (yield 0.04 g).

Refinement top

The hydroxy and ammonium H atoms were located in a difference Fourier map, and were refined with distance restraints of O—H = N—H 0.85 (1) Å and H···H 1.39 (1) Å. Their temperature factors were freely refined. The aromatic H atoms were placed at calculated positions, and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Ammonium benzenephosphonate top
Crystal data top
NH4+·C6H6O3PF(000) = 736
Mr = 175.12Dx = 1.321 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3647 reflections
a = 31.122 (2) Åθ = 2.6–27.5°
b = 7.1249 (5) ŵ = 0.27 mm1
c = 7.9441 (5) ÅT = 293 K
V = 1761.5 (2) Å3Block, colorless
Z = 80.4 × 0.4 × 0.2 mm
Data collection top
Bruker SMART 1000
diffractometer
1565 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3730
Tmin = 0.807, Tmax = 0.947k = 86
7880 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.27 w = 1/[σ2(Fo2) + (0.073P)2 + 2.2855P]
where P = (Fo2 + 2Fc2)/3
1565 reflections(Δ/σ)max = 0.001
120 parametersΔρmax = 0.31 e Å3
11 restraintsΔρmin = 0.39 e Å3
Crystal data top
NH4+·C6H6O3PV = 1761.5 (2) Å3
Mr = 175.12Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 31.122 (2) ŵ = 0.27 mm1
b = 7.1249 (5) ÅT = 293 K
c = 7.9441 (5) Å0.4 × 0.4 × 0.2 mm
Data collection top
Bruker SMART 1000
diffractometer
1565 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1540 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.947Rint = 0.027
7880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06611 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.27Δρmax = 0.31 e Å3
1565 reflectionsΔρmin = 0.39 e Å3
120 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.42250 (3)0.69330 (12)0.59684 (10)0.0317 (3)
O10.45014 (8)0.6911 (4)0.4300 (3)0.0410 (7)
H10.4413 (14)0.607 (4)0.363 (4)0.056 (13)*
O20.43772 (8)0.8608 (3)0.6936 (3)0.0403 (6)
O30.42584 (8)0.5088 (3)0.6853 (3)0.0431 (7)
N10.46015 (10)0.8111 (4)1.0270 (4)0.0373 (7)
H110.4547 (9)0.827 (4)0.9228 (14)0.053 (13)*
H120.4455 (8)0.720 (3)1.065 (3)0.052 (13)*
H130.4869 (4)0.786 (4)1.038 (4)0.043 (11)*
H140.4541 (9)0.910 (2)1.081 (3)0.048 (12)*
C10.36793 (11)0.7216 (5)0.5282 (5)0.0381 (8)
C20.33569 (14)0.6096 (7)0.5945 (6)0.0566 (11)
H20.34230.51940.67510.068*
C30.29380 (15)0.6318 (9)0.5410 (8)0.0742 (15)
H30.27220.55840.58790.089*
C40.28380 (16)0.7611 (9)0.4195 (8)0.0802 (16)
H40.25560.77250.38220.096*
C50.31517 (17)0.8734 (8)0.3528 (7)0.0755 (15)
H50.30820.96190.27110.091*
C60.35723 (14)0.8548 (6)0.4073 (6)0.0565 (11)
H60.37850.93200.36270.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0411 (5)0.0288 (5)0.0252 (5)0.0007 (3)0.0013 (3)0.0022 (3)
O10.0427 (14)0.0516 (16)0.0289 (13)0.0082 (12)0.0003 (11)0.0042 (11)
O20.0564 (15)0.0319 (12)0.0326 (13)0.0039 (11)0.0083 (11)0.0017 (10)
O30.0605 (16)0.0326 (13)0.0362 (13)0.0034 (12)0.0034 (11)0.0064 (11)
N10.0479 (19)0.0322 (16)0.0318 (16)0.0016 (13)0.0031 (14)0.0005 (13)
C10.0419 (19)0.0355 (18)0.0369 (19)0.0011 (15)0.0009 (15)0.0046 (15)
C20.054 (2)0.060 (3)0.056 (3)0.008 (2)0.001 (2)0.002 (2)
C30.041 (2)0.092 (4)0.089 (4)0.011 (2)0.004 (2)0.011 (3)
C40.045 (3)0.099 (4)0.097 (4)0.016 (3)0.018 (3)0.019 (4)
C50.066 (3)0.078 (3)0.082 (3)0.017 (3)0.026 (3)0.011 (3)
C60.055 (3)0.055 (2)0.060 (3)0.005 (2)0.011 (2)0.014 (2)
Geometric parameters (Å, º) top
P1—O31.494 (2)C1—C61.391 (5)
P1—O21.497 (2)C2—C31.380 (7)
P1—O11.580 (3)C2—H20.9300
P1—C11.795 (4)C3—C41.370 (8)
O1—H10.85 (1)C3—H30.9300
N1—H110.85 (1)C4—C51.369 (8)
N1—H120.85 (1)C4—H40.9300
N1—H130.85 (1)C5—C61.385 (6)
N1—H140.85 (1)C5—H50.9300
C1—C21.386 (6)C6—H60.9300
O3—P1—O2115.98 (14)C3—C2—C1120.1 (5)
O3—P1—O1110.38 (14)C3—C2—H2120.0
O2—P1—O1105.45 (14)C1—C2—H2120.0
O3—P1—C1107.91 (16)C4—C3—C2120.6 (5)
O2—P1—C1111.44 (16)C4—C3—H3119.7
O1—P1—C1105.14 (15)C2—C3—H3119.7
P1—O1—H1111 (3)C5—C4—C3120.3 (5)
H11—N1—H12109.6 (14)C5—C4—H4119.9
H11—N1—H13108.8 (14)C3—C4—H4119.9
H12—N1—H13109.2 (14)C4—C5—C6119.8 (5)
H11—N1—H14109.7 (14)C4—C5—H5120.1
H12—N1—H14110.1 (14)C6—C5—H5120.1
H13—N1—H14109.5 (14)C5—C6—C1120.5 (4)
C2—C1—C6118.8 (4)C5—C6—H6119.8
C2—C1—P1120.3 (3)C1—C6—H6119.8
C6—C1—P1120.9 (3)
O3—P1—C1—C215.9 (4)P1—C1—C2—C3179.9 (4)
O2—P1—C1—C2112.6 (3)C1—C2—C3—C41.5 (8)
O1—P1—C1—C2133.7 (3)C2—C3—C4—C51.7 (9)
O3—P1—C1—C6163.7 (3)C3—C4—C5—C60.6 (9)
O2—P1—C1—C667.8 (4)C4—C5—C6—C10.6 (8)
O1—P1—C1—C645.9 (4)C2—C1—C6—C50.8 (7)
C6—C1—C2—C30.3 (7)P1—C1—C6—C5178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.85 (1)1.71 (2)2.526 (3)163 (4)
N1—H11···O20.85 (1)1.91 (1)2.762 (4)175 (3)
N1—H12···O3ii0.85 (1)1.99 (1)2.814 (4)164 (3)
N1—H13···O1iii0.85 (1)2.09 (2)2.940 (4)173 (3)
N1—H14···O2iv0.85 (1)1.93 (1)2.775 (4)177 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2; (iii) x+1, y, z+3/2; (iv) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaNH4+·C6H6O3P
Mr175.12
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)31.122 (2), 7.1249 (5), 7.9441 (5)
V3)1761.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.4 × 0.4 × 0.2
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.807, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
7880, 1565, 1540
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.173, 1.27
No. of reflections1565
No. of parameters120
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.39

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.85 (1)1.71 (2)2.526 (3)163 (4)
N1—H11···O20.85 (1)1.91 (1)2.762 (4)175 (3)
N1—H12···O3ii0.85 (1)1.99 (1)2.814 (4)164 (3)
N1—H13···O1iii0.85 (1)2.09 (2)2.940 (4)173 (3)
N1—H14···O2iv0.85 (1)1.93 (1)2.775 (4)177 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2; (iii) x+1, y, z+3/2; (iv) x, y+2, z+1/2.
 

Acknowledgements

This work was sponsored by the Natural Science Foundation of Shanxi Province (grant No. 2008011024) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2002). J. Mol. Struct. 609, 97–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, K. P. & Vidyasagar, K. (2005). Eur. J. Inorg. Chem. pp. 4936–4943.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeakley, T. J. R. (1976). Acta Cryst. B32, 2889–2890.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds