organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl {(4-meth­oxy­phen­yl)[5-(4-nitro­phen­yl)-1,3,4-thia­diazol-2-ylamino]meth­yl}phospho­nate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 6 March 2008; accepted 9 June 2008; online 5 July 2008)

The title compound, C20H23N4O6PS, was synthesized by the reaction of N-(4-methoxy­benzyl­idene)-5-(4-nitro­phen­yl)-1,3,4-thia­diazol-2-amine and diethyl phosphite. The thia­diazole and nitro-substituted phenyl rings in the mol­ecule are approximately coplanar, the dihedral angle being 5.3 (2)°. The dihedral angle formed by the mean plane through all non-H atoms of both the thia­diazole and the nitro-substituted phenyl ring with the plane of the meth­oxy-substituted phenyl ring is 48.9 (2)°. In the crystal structure, mol­ecules form centrosymmetric dimers as a result of N—H⋯O bonds involving amine H and phosphine oxide O atoms.

Related literature

For related literature, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pesticide Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23N4O6PS

  • Mr = 478.45

  • Monoclinic, P 21 /n

  • a = 11.481 (2) Å

  • b = 19.426 (4) Å

  • c = 11.960 (2) Å

  • β = 117.08 (3)°

  • V = 2375.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.930, Tmax = 0.976

  • 4497 measured reflections

  • 4276 independent reflections

  • 2330 reflections with I > 2σ(I)

  • Rint = 0.064

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.146

  • S = 1.03

  • 4276 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.86 1.94 2.782 (6) 165
Symmetry code: (i) -x, -y, -z.

Data collection: CAD-4 Software (Enraf–Nonius,1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of biologically important compounds, which often exhibit insecticidal, fungicidal and other biological activities (Nakagawa et al., 1996; Wang et al., 1999).

We report here the X-ray structure of the title compound,(I)(Fig. 1). The thiadiazole and nitro-substituted phenyl rings in the molecule of (I) are approximately coplanar: the dihedral angle between the C11—C16 and S/C10/N2/N3/C9 planes being 5.3 (2)°, the maximum deviation from the mean plane N1/C9/C10/N2/N3/S/C11/C12/C13/C14/C15/C16 does not exceed 0.11 Å. The dihedral angle formed by the latter plane with the plane of the methoxy- substituted phenyl ring C2—C7 is equal to 48.9 (2) °.

In the crystal structure, molecules of (I) form centrosymmetric dimers due to N—H···O bonds involving amine hydrogen and phosphineoxide oxygen [N1···O5i 2.782 (6) Å; symmetry code (i): -x, -y, -z].

Related literature top

For related literature, see: Nakagawa et al. (1996); Wang et al. (1999).

Experimental top

N-(4-methoxybenzylidene)-5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (2 mmol) and diethyl phosphite (5 mmol) were mixed in a 25 ml flask (without any solvent),and kept in the oil bath at 90°C for 6 h. After cooling, the crude product (I) precipitated and was filtered. Pure compound (I) was obtained by recrystallization from ethanol(20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were positioned geometrically, with N—H=0.86 Å and C—H=0.98, 0.97, 0.96 and 0.93 Å for methine, methylene, methyl and aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H)=xUeq(C, N), where x=1.5 for methyl H atoms and x=1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius,1989); cell refinement: CAD-4 Software (Enraf–Nonius,1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small circles of arbitrary radius.
Diethyl {(4-methoxyphenyl)[5-(4-nitrophenyl)-1,3,4-thiadiazol-2- ylamino]methyl}phosphonate top
Crystal data top
C20H23N4O6PSF(000) = 1000
Mr = 478.45Dx = 1.338 Mg m3
Monoclinic, P21/nMelting point: 476 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.481 (2) ÅCell parameters from 25 reflections
b = 19.426 (4) Åθ = 9–13°
c = 11.960 (2) ŵ = 0.25 mm1
β = 117.08 (3)°T = 298 K
V = 2375.0 (10) Å3Block, light yellow
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2330 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ω/2θ scansh = 1312
Absorption correction: ψ scan
(North et al., 1968)
k = 023
Tmin = 0.930, Tmax = 0.976l = 014
4497 measured reflections3 standard reflections every 200 reflections
4276 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.03P)2 + 3.2P]
where P = (Fo2 + 2Fc2)/3
4276 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H23N4O6PSV = 2375.0 (10) Å3
Mr = 478.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.481 (2) ŵ = 0.25 mm1
b = 19.426 (4) ÅT = 298 K
c = 11.960 (2) Å0.30 × 0.20 × 0.10 mm
β = 117.08 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2330 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.064
Tmin = 0.930, Tmax = 0.9763 standard reflections every 200 reflections
4497 measured reflections intensity decay: none
4276 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
4276 reflectionsΔρmin = 0.21 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.11752 (9)0.17107 (5)0.10907 (11)0.0688 (4)
P0.23008 (11)0.02508 (6)0.20206 (12)0.0738 (4)
N10.1765 (3)0.04373 (17)0.0120 (3)0.0700 (10)
H1A0.09660.03420.06310.084*
O10.2443 (4)0.2713 (2)0.1562 (4)0.1097 (12)
C10.1296 (7)0.2920 (3)0.2318 (6)0.113 (2)
H1B0.13500.33680.26310.185*
H1C0.09060.26030.30070.185*
H1D0.07690.29450.18850.185*
N20.3560 (3)0.19583 (16)0.0431 (3)0.0639 (9)
O20.3525 (4)0.53251 (19)0.1632 (4)0.154 (2)
C20.2280 (7)0.2053 (3)0.1134 (7)0.108 (2)
N30.3379 (3)0.12947 (16)0.0636 (3)0.0699 (10)
O30.1531 (4)0.52326 (17)0.2953 (4)0.1379 (17)
C30.1235 (6)0.1701 (3)0.1297 (6)0.1072 (19)
H3B0.04160.18900.17950.129*
N40.2539 (5)0.4987 (2)0.2075 (4)0.0979 (14)
C40.1299 (4)0.1052 (2)0.0755 (5)0.0913 (16)
H4A0.05300.08210.09110.110*
O40.2896 (4)0.04106 (19)0.2851 (4)0.1017 (13)
O50.0918 (3)0.03805 (17)0.1673 (3)0.0877 (10)
C50.2466 (4)0.0758 (2)0.0010 (4)0.0624 (11)
O60.3218 (3)0.0846 (2)0.2736 (3)0.1005 (12)
C60.3601 (5)0.1129 (3)0.0189 (5)0.0917 (16)
H6A0.44260.09440.06830.110*
C70.3476 (6)0.1768 (3)0.0357 (6)0.0997 (17)
H7A0.42290.20170.01940.120*
C80.2618 (4)0.0111 (2)0.0683 (4)0.0660 (12)
H8A0.35270.00420.10000.079*
C90.2198 (3)0.1078 (2)0.0078 (4)0.0581 (10)
C100.2513 (3)0.22694 (18)0.0425 (4)0.0560 (10)
C110.2495 (3)0.29723 (19)0.0822 (3)0.0553 (10)
C120.1363 (3)0.32734 (19)0.1726 (4)0.0656 (12)
H12A0.05840.30260.20440.079*
C130.1361 (4)0.3941 (2)0.2172 (4)0.0795 (14)
H13A0.05990.41300.28000.095*
C140.2518 (4)0.4315 (2)0.1658 (4)0.0774 (13)
C150.3662 (4)0.4028 (2)0.0697 (4)0.0732 (13)
H15A0.44260.42870.03330.088*
C160.3654 (3)0.3367 (2)0.0296 (4)0.0698 (12)
H16A0.44170.31770.03280.084*
C170.2907 (7)0.1293 (4)0.4169 (7)0.118 (3)
H17A0.26900.14140.48300.177*
H17B0.23460.15390.34180.177*
H17C0.38020.14130.44130.177*
C180.2731 (7)0.0561 (3)0.3935 (7)0.124 (2)
H18A0.33680.03090.46530.151*
H18B0.18630.04250.37980.151*
C190.2659 (6)0.2016 (3)0.2448 (6)0.121 (2)
H19A0.23850.23970.27830.182*
H19B0.34810.21230.24610.182*
H19C0.20140.19300.16000.182*
C200.2802 (6)0.1418 (3)0.3193 (6)0.1095 (18)
H20A0.19730.13130.31840.131*
H20B0.34370.15100.40550.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0357 (5)0.0488 (6)0.0856 (8)0.0028 (5)0.0039 (5)0.0022 (6)
P0.0516 (7)0.0748 (8)0.0725 (8)0.0008 (6)0.0087 (6)0.0038 (7)
N10.0389 (18)0.057 (2)0.085 (2)0.0010 (16)0.0027 (17)0.0111 (18)
O10.118 (3)0.102 (3)0.107 (3)0.011 (3)0.094 (3)0.013 (2)
C10.119 (5)0.123 (6)0.110 (5)0.008 (5)0.068 (5)0.014 (4)
N20.0360 (17)0.051 (2)0.073 (2)0.0047 (15)0.0024 (15)0.0008 (17)
O20.135 (4)0.066 (2)0.163 (4)0.040 (2)0.018 (3)0.012 (2)
C20.137 (6)0.048 (3)0.168 (6)0.007 (3)0.095 (5)0.018 (3)
N30.0392 (18)0.050 (2)0.087 (2)0.0054 (15)0.0002 (17)0.0068 (18)
O30.130 (3)0.059 (2)0.148 (4)0.018 (2)0.003 (3)0.015 (2)
C30.100 (4)0.073 (4)0.150 (5)0.031 (3)0.058 (4)0.039 (4)
N40.091 (3)0.057 (3)0.096 (3)0.002 (2)0.001 (3)0.001 (2)
C40.066 (3)0.058 (3)0.124 (4)0.014 (2)0.020 (3)0.015 (3)
O40.117 (3)0.097 (3)0.113 (3)0.037 (2)0.036 (3)0.049 (2)
O50.0603 (19)0.104 (2)0.091 (2)0.0058 (17)0.0280 (17)0.0085 (19)
C50.055 (2)0.050 (2)0.082 (3)0.001 (2)0.031 (2)0.000 (2)
O60.068 (2)0.101 (3)0.104 (3)0.019 (2)0.0099 (19)0.043 (2)
C60.073 (3)0.080 (4)0.136 (5)0.002 (3)0.060 (3)0.008 (3)
C70.116 (5)0.062 (3)0.151 (5)0.024 (3)0.086 (4)0.017 (3)
C80.036 (2)0.057 (3)0.096 (3)0.0057 (18)0.023 (2)0.006 (2)
C90.032 (2)0.051 (2)0.072 (3)0.0090 (17)0.0069 (18)0.006 (2)
C100.0327 (19)0.042 (2)0.072 (3)0.0039 (16)0.0058 (18)0.0128 (19)
C110.040 (2)0.052 (2)0.055 (2)0.0013 (17)0.0056 (17)0.0093 (19)
C120.041 (2)0.041 (2)0.076 (3)0.0024 (17)0.0062 (19)0.001 (2)
C130.055 (3)0.046 (2)0.089 (3)0.002 (2)0.009 (2)0.012 (2)
C140.063 (3)0.052 (3)0.084 (3)0.000 (2)0.006 (2)0.002 (2)
C150.046 (2)0.065 (3)0.085 (3)0.009 (2)0.009 (2)0.003 (2)
C160.039 (2)0.051 (2)0.080 (3)0.0010 (18)0.0073 (19)0.004 (2)
C170.129 (7)0.116 (7)0.109 (6)0.002 (6)0.037 (5)0.029 (6)
C180.136 (6)0.108 (5)0.127 (6)0.003 (4)0.071 (5)0.018 (4)
C190.124 (5)0.111 (5)0.133 (5)0.007 (4)0.063 (4)0.004 (4)
C200.106 (4)0.113 (5)0.110 (5)0.010 (4)0.050 (4)0.025 (4)
Geometric parameters (Å, º) top
S—C101.749 (3)O6—C201.415 (6)
S—C91.750 (4)C6—C71.381 (7)
P—O51.468 (3)C6—H6A0.9300
P—O61.535 (3)C7—H7A0.9300
P—O41.577 (3)C8—H8A0.9800
P—C81.816 (5)C10—C111.442 (5)
N1—C91.332 (5)C11—C121.386 (5)
N1—C81.469 (5)C11—C161.411 (5)
N1—H1A0.8600C12—C131.402 (5)
O1—C11.276 (6)C12—H12A0.9300
O1—C21.423 (6)C13—C141.387 (5)
C1—H1B0.9600C13—H13A0.9300
C1—H1C0.9600C14—C151.408 (5)
C1—H1D0.9600C15—C161.373 (5)
N2—C101.318 (4)C15—H15A0.9300
N2—N31.346 (4)C16—H16A0.9300
O2—N41.203 (5)C17—C181.446 (8)
C2—C31.316 (7)C17—H17A0.9600
C2—C71.376 (7)C17—H17B0.9600
N3—C91.301 (4)C17—H17C0.9600
O3—N41.251 (5)C18—H18A0.9700
C3—C41.404 (6)C18—H18B0.9700
C3—H3B0.9300C19—C201.426 (7)
N4—C141.402 (6)C19—H19A0.9600
C4—C51.352 (5)C19—H19B0.9600
C4—H4A0.9300C19—H19C0.9600
O4—C181.423 (7)C20—H20A0.9700
C5—C61.412 (6)C20—H20B0.9700
C5—C81.471 (5)
C10—S—C987.00 (18)N3—C9—N1125.9 (3)
O5—P—O6114.1 (2)N3—C9—S113.4 (3)
O5—P—O4114.9 (2)N1—C9—S120.6 (3)
O6—P—O4105.8 (2)N2—C10—C11124.1 (3)
O5—P—C8113.63 (19)N2—C10—S111.7 (3)
O6—P—C8104.0 (2)C11—C10—S124.0 (3)
O4—P—C8103.3 (2)C12—C11—C16118.6 (4)
C9—N1—C8121.8 (3)C12—C11—C10121.6 (3)
C9—N1—H1A119.1C16—C11—C10119.8 (3)
C8—N1—H1A119.1C11—C12—C13121.7 (4)
C1—O1—C2106.1 (5)C11—C12—H12A119.1
O1—C1—H1B109.5C13—C12—H12A119.1
O1—C1—H1C109.5C14—C13—C12118.6 (4)
H1B—C1—H1C109.5C14—C13—H13A120.7
O1—C1—H1D109.5C12—C13—H13A120.7
H1B—C1—H1D109.5C13—C14—N4119.8 (4)
H1C—C1—H1D109.5C13—C14—C15120.3 (4)
C10—N2—N3114.8 (3)N4—C14—C15119.8 (4)
C3—C2—C7116.9 (5)C16—C15—C14120.2 (4)
C3—C2—O1132.5 (6)C16—C15—H15A119.9
C7—C2—O1110.5 (6)C14—C15—H15A119.9
C9—N3—N2113.1 (3)C15—C16—C11120.5 (3)
C2—C3—C4123.1 (5)C15—C16—H16A119.8
C2—C3—H3B118.5C11—C16—H16A119.8
C4—C3—H3B118.5C18—C17—H17A109.5
O2—N4—O3119.1 (4)C18—C17—H17B109.5
O2—N4—C14121.2 (4)H17A—C17—H17B109.5
O3—N4—C14119.7 (4)C18—C17—H17C109.5
C5—C4—C3120.8 (5)H17A—C17—H17C109.5
C5—C4—H4A119.6H17B—C17—H17C109.5
C3—C4—H4A119.6O4—C18—C17108.2 (6)
C18—O4—P122.8 (4)O4—C18—H18A110.1
C4—C5—C6117.2 (4)C17—C18—H18A110.1
C4—C5—C8124.1 (4)O4—C18—H18B110.1
C6—C5—C8118.5 (4)C17—C18—H18B110.1
C20—O6—P122.7 (3)H18A—C18—H18B108.4
C7—C6—C5119.4 (5)C20—C19—H19A109.5
C7—C6—H6A120.3C20—C19—H19B109.5
C5—C6—H6A120.3H19A—C19—H19B109.5
C2—C7—C6122.5 (5)C20—C19—H19C109.5
C2—C7—H7A118.7H19A—C19—H19C109.5
C6—C7—H7A118.7H19B—C19—H19C109.5
N1—C8—C5112.2 (3)O6—C20—C19111.2 (5)
N1—C8—P110.0 (3)O6—C20—H20A109.4
C5—C8—P110.4 (3)C19—C20—H20A109.4
N1—C8—H8A108.0O6—C20—H20B109.4
C5—C8—H8A108.0C19—C20—H20B109.4
P—C8—H8A108.0H20A—C20—H20B108.0
C1—O1—C2—C36.7 (9)N2—N3—C9—N1176.5 (4)
C1—O1—C2—C7176.9 (5)N2—N3—C9—S0.5 (5)
C10—N2—N3—C91.4 (5)C8—N1—C9—N30.6 (7)
C7—C2—C3—C42.2 (10)C8—N1—C9—S177.5 (3)
O1—C2—C3—C4178.5 (6)C10—S—C9—N30.3 (3)
C2—C3—C4—C50.9 (9)C10—S—C9—N1177.5 (4)
O5—P—O4—C1848.1 (5)N3—N2—C10—C11177.9 (4)
O6—P—O4—C1878.7 (5)N3—N2—C10—S1.6 (5)
C8—P—O4—C18172.4 (5)C9—S—C10—N21.0 (3)
C3—C4—C5—C60.3 (8)C9—S—C10—C11177.4 (4)
C3—C4—C5—C8174.3 (5)N2—C10—C11—C12179.8 (4)
O5—P—O6—C209.6 (5)S—C10—C11—C124.3 (6)
O4—P—O6—C20117.7 (5)N2—C10—C11—C160.9 (6)
C8—P—O6—C20133.9 (4)S—C10—C11—C16175.0 (3)
C4—C5—C6—C71.1 (7)C16—C11—C12—C133.5 (6)
C8—C5—C6—C7173.8 (5)C10—C11—C12—C13175.8 (4)
C3—C2—C7—C63.0 (9)C11—C12—C13—C142.3 (7)
O1—C2—C7—C6179.9 (5)C12—C13—C14—N4179.2 (4)
C5—C6—C7—C22.5 (9)C12—C13—C14—C150.8 (7)
C9—N1—C8—C5136.1 (4)O2—N4—C14—C13178.9 (5)
C9—N1—C8—P100.6 (4)O3—N4—C14—C133.6 (8)
C4—C5—C8—N149.1 (6)O2—N4—C14—C150.5 (8)
C6—C5—C8—N1136.4 (4)O3—N4—C14—C15177.9 (5)
C4—C5—C8—P74.1 (5)C13—C14—C15—C162.5 (7)
C6—C5—C8—P100.5 (4)N4—C14—C15—C16179.1 (5)
O5—P—C8—N153.6 (3)C14—C15—C16—C111.2 (7)
O6—P—C8—N1178.1 (3)C12—C11—C16—C151.7 (7)
O4—P—C8—N171.6 (3)C10—C11—C16—C15177.6 (4)
O5—P—C8—C570.8 (3)P—O4—C18—C17157.3 (5)
O6—P—C8—C553.7 (3)P—O6—C20—C19105.9 (5)
O4—P—C8—C5164.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.861.942.782 (6)165
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC20H23N4O6PS
Mr478.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.481 (2), 19.426 (4), 11.960 (2)
β (°) 117.08 (3)
V3)2375.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.930, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
4497, 4276, 2330
Rint0.064
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.146, 1.03
No. of reflections4276
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius,1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.861.942.782 (6)165
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors are grateful to Professor Hua-Qin Wang of Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pesticide Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds