organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′,6′-Bis(ethyl­amino)-2-[(2-hy­droxy­ethyl)­amino]-2′,7′-di­methylspiro­[isoindoline-1,9′-xanthen]-3-one

aSchool of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, People's Republic of China, and bState Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Rd., Dalian 116012, People's Republic of China
*Correspondence e-mail: tmzhong2002@yahoo.com.cn

(Received 5 June 2008; accepted 26 July 2008; online 31 July 2008)

In the title compound, C28H32N4O3, the dihedral angle between the planes of the xanthene ring system and the spiro­lactam ring is 85.99 (3)°. Mol­ecules are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen-bonding inter­actions.

Related literature

For the synthesis and related structures of rhodamine dyes, see: Ko et al. (2006[Ko, S.-K., Yang, Y.-K., Tae, J. & Shin, I. (2006). J. Am. Chem. Soc. 128, 14150-14155.]); Wu et al. (2007[Wu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538-1540.]); Zhang et al. (2008[Zhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403.]). For related literature on the photophysical properties and applications of rhodamine dyes, see: Lakowicz (2006[Lakowicz, J. R. (2006). TITLE? 3rd ed., p. 67. New York:Springer.]).

[Scheme 1]

Experimental

Crystal data
  • C28H32N4O3

  • Mr = 472.58

  • Triclinic, [P \overline 1]

  • a = 9.3195 (18) Å

  • b = 9.4770 (16) Å

  • c = 15.384 (3) Å

  • α = 94.722 (18)°

  • β = 107.592 (13)°

  • γ = 98.924 (13)°

  • V = 1267.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 8770 measured reflections

  • 4305 independent reflections

  • 3144 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.06

  • 4305 reflections

  • 325 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.898 (16) 2.185 (18) 3.044 (2) 160 (2)
O3—H3C⋯O1ii 0.82 1.98 2.770 (2) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among many fluorescent compounds, rhodamine dyes are known to have excellent photophysical properties, (Lakowicz, 2006) and they are one of the most widely used fluorophores for labeling and sensing biomolecules (Ko et al., 2006; Wu et al., 2007). There are a few single-crystal reports about rhodamine derivatives bearing a lactam moiety (Wu et al., 2007; Zhang et al., 2008). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties.

In agreement with other reported models, (Wu et al., 2007) the main skeleton of the title molecule is formed by the xanthene ring and the spirolactam-ring. As shown in Figure 1, the atoms of the xanthene ring and spirolactam-rings are both nearly planar and are almost perpendicular to each other. R.m.s. deviations from planarity are 0.028 (1) Å for the xanthene ring and 0.033 (0) Å for the spirolactam-ring, respectively. The dihedral angle between the planes of the xanthene ring and the spirolactam ring is 85.99 (3)°.

Analysis of the crystal packing of the title molecule (Figure 2), shows that the molecules of the title compound are connected via intermolecular N3—H3A···O3 and O3—H3C···O1 hydrogen bonds (Table 1). The oxygen atom on the spirolactam-ring acts as acceptor for an O—H···O hydrogen bond from a neighboring molecule. The oxygen atom of the hydroxyl group in turn acts as acceptor for a N—H···O hydrogen bond from again another molecule, thus forming a chain with two consecutive hydrogen bonds of the type N—H···O—H···OC. Via these hydrogen bonds molecules are connected into double stranded chains as shown in Figure 2.

Related literature top

For the synthesis and related structures of rhodamine dyes, see: Ko et al. (2006); Wu et al. (2007); Zhang et al. (2008). For related literature on the photophysical properties and applications of rhodamine dyes, see: Lakowicz (2006).

Experimental top

Sodium borohydride (15.2 mg, 0.4 mmol) was slowly added to a solution of 3',6'-bis(ethylamino)-2',7'-dimethyl-2-(2-oxoethylideneamino)spiro [isoindoline-1,9'-xanthen]-3-one (132 mg, 0.3 mmol) in ethanol (20 ml). The reaction mixture was stirred for 2 h at room temperature and the solvent was totally removed under reduced pressure. The crude product was dissolved in CH2Cl2 (20 ml) and 3 ml of an aqueous solution of K2CO3 was added. The organic layer was separated and dried over MgSO4. After filtration, the solvent was removed under reduced pressure. The residue was placed on a silica gel column (200–300 mesh). The column was eluted with a mixture (2:1, v/v) of petroleum ether /ethyl acetate, to give 131.5 mg of the title compound (93%). Crystals were grown by dissolving the compound in CH2Cl2 and slowly diffusing n-hexane into the solution.

Refinement top

Geometrically constrained hydrogen atoms were placed in calculated positions and refined using the riding model (C—H = 0.93-0.96 Å, and O—H = 0.82 Å), with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O). All amine hydrogen atoms were located in difference density Fourier maps, were introduced with a distance restraint (N—H = 0.89 (2) Å) and refined freely. The isotropic displacement parameter was set to Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker 2005); cell refinement: APEX2 (Bruker 2005); data reduction: APEX2 (Bruker 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound showing the double stranded hydrogen bond connected chains. Dashed lines indicate hydrogen bonds.
3',6'-Bis(ethylamino)-2-[(2-hydroxyethyl)amino]-2',7'- dimethylspiro[isoindoline-1,9'-xanthen]-3-one top
Crystal data top
C28H32N4O3Z = 2
Mr = 472.58F(000) = 504
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3195 (18) ÅCell parameters from 2583 reflections
b = 9.4770 (16) Åθ = 2.3–26.8°
c = 15.384 (3) ŵ = 0.08 mm1
α = 94.722 (18)°T = 298 K
β = 107.592 (13)°Block, colourless
γ = 98.924 (13)°0.30 × 0.20 × 0.15 mm
V = 1267.4 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3144 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ϕ and ω scansh = 1111
8770 measured reflectionsk = 1111
4305 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.068P)2 + 0.1313P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4305 reflectionsΔρmax = 0.34 e Å3
325 parametersΔρmin = 0.20 e Å3
4 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (8)
Crystal data top
C28H32N4O3γ = 98.924 (13)°
Mr = 472.58V = 1267.4 (4) Å3
Triclinic, P1Z = 2
a = 9.3195 (18) ÅMo Kα radiation
b = 9.4770 (16) ŵ = 0.08 mm1
c = 15.384 (3) ÅT = 298 K
α = 94.722 (18)°0.30 × 0.20 × 0.15 mm
β = 107.592 (13)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3144 reflections with I > 2σ(I)
8770 measured reflectionsRint = 0.024
4305 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.34 e Å3
4305 reflectionsΔρmin = 0.20 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.69421 (15)0.29618 (12)0.25724 (9)0.0457 (3)
C160.8939 (2)0.3280 (2)0.19461 (12)0.0433 (5)
H16A0.89660.23070.19710.052*
C140.5894 (2)0.35022 (18)0.29116 (11)0.0364 (4)
C100.4573 (2)0.52933 (18)0.32506 (12)0.0393 (4)
H10A0.44220.62400.32490.047*
C90.5676 (2)0.49027 (17)0.28839 (11)0.0346 (4)
C200.7802 (2)0.53260 (18)0.22210 (11)0.0353 (4)
N10.73649 (16)0.72826 (14)0.32209 (9)0.0371 (4)
C80.66223 (19)0.59937 (17)0.25166 (11)0.0342 (4)
C150.7889 (2)0.38924 (18)0.22530 (11)0.0374 (4)
C130.5043 (2)0.25175 (19)0.32712 (13)0.0441 (5)
H13A0.52190.15780.32800.053*
C170.9953 (2)0.4115 (2)0.16000 (12)0.0443 (5)
C190.8840 (2)0.6140 (2)0.18778 (12)0.0425 (4)
H19A0.88010.71110.18530.051*
C110.3697 (2)0.43659 (19)0.36141 (12)0.0410 (4)
O10.72540 (17)0.96667 (13)0.35009 (10)0.0621 (4)
N41.0976 (2)0.3528 (2)0.12588 (12)0.0589 (5)
H4A1.175 (2)0.413 (2)0.1209 (16)0.071*
C70.56703 (19)0.67124 (18)0.17571 (11)0.0354 (4)
C120.3930 (2)0.29227 (19)0.36189 (12)0.0431 (5)
C180.9910 (2)0.5596 (2)0.15757 (12)0.0449 (5)
N20.82046 (17)0.70879 (16)0.41102 (10)0.0422 (4)
H2A0.787 (2)0.7625 (19)0.4486 (12)0.051*
C20.5870 (2)0.81693 (19)0.20269 (12)0.0414 (4)
N30.3075 (2)0.19768 (18)0.39963 (14)0.0619 (5)
H3A0.216 (2)0.216 (2)0.3996 (16)0.074*
C210.2564 (3)0.4877 (2)0.40272 (15)0.0576 (5)
H21A0.25570.58750.39620.086*
H21B0.28540.47660.46680.086*
H21C0.15590.43170.37140.086*
C10.6898 (2)0.85141 (18)0.29889 (13)0.0422 (4)
C60.4744 (2)0.6098 (2)0.08895 (12)0.0443 (5)
H6A0.45970.51110.07070.053*
C261.1000 (3)0.6534 (2)0.12199 (15)0.0609 (6)
H26A1.08180.75030.12590.091*
H26B1.08430.61730.05900.091*
H26C1.20350.65240.15840.091*
C50.4036 (2)0.6986 (3)0.02931 (13)0.0561 (6)
H5A0.34030.65880.02970.067*
C40.4252 (3)0.8445 (3)0.05583 (15)0.0609 (6)
H4B0.37770.90210.01420.073*
C30.5162 (3)0.9066 (2)0.14321 (15)0.0565 (6)
H3B0.52991.00500.16170.068*
C220.3242 (3)0.0484 (2)0.40404 (18)0.0770 (7)
H22A0.28420.01300.45110.092*
H22B0.43250.04450.42270.092*
C251.2242 (4)0.1710 (4)0.0779 (2)0.1053 (11)
H25A1.22920.07050.07660.158*
H25B1.32300.22770.11230.158*
H25C1.19470.19410.01610.158*
C241.1072 (3)0.2038 (3)0.12294 (18)0.0750 (7)
H24A1.00770.14560.08860.090*
H24B1.13610.17910.18500.090*
C230.2464 (4)0.0473 (3)0.3172 (2)0.1070 (11)
H23A0.26380.14330.32510.160*
H23B0.28590.01380.27030.160*
H23C0.13830.04750.29950.160*
C281.0649 (2)0.7337 (2)0.52897 (13)0.0526 (5)
H28A1.04220.63250.53560.063*
H28B1.17490.76180.54300.063*
C270.9862 (2)0.7548 (2)0.43216 (13)0.0529 (5)
H27A1.00960.85570.42490.063*
H27B1.02190.69860.39010.063*
O31.01619 (16)0.81677 (16)0.59124 (9)0.0627 (4)
H3C1.08140.88960.61490.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0503 (8)0.0360 (7)0.0620 (8)0.0138 (6)0.0308 (7)0.0100 (6)
C160.0461 (11)0.0459 (10)0.0416 (10)0.0196 (9)0.0147 (9)0.0048 (8)
C140.0355 (10)0.0375 (9)0.0364 (9)0.0076 (8)0.0123 (8)0.0030 (7)
C100.0409 (11)0.0355 (9)0.0440 (10)0.0087 (8)0.0167 (9)0.0051 (8)
C90.0357 (10)0.0342 (9)0.0333 (9)0.0050 (7)0.0111 (8)0.0036 (7)
C200.0347 (10)0.0390 (9)0.0325 (9)0.0078 (8)0.0112 (8)0.0025 (7)
N10.0386 (9)0.0354 (8)0.0364 (8)0.0039 (6)0.0131 (7)0.0015 (6)
C80.0358 (10)0.0333 (9)0.0336 (9)0.0051 (7)0.0130 (8)0.0004 (7)
C150.0368 (10)0.0412 (10)0.0336 (9)0.0080 (8)0.0103 (8)0.0037 (7)
C130.0489 (12)0.0335 (9)0.0525 (11)0.0073 (8)0.0196 (9)0.0089 (8)
C170.0381 (11)0.0623 (12)0.0342 (10)0.0176 (9)0.0109 (8)0.0021 (8)
C190.0421 (11)0.0439 (10)0.0447 (10)0.0081 (8)0.0184 (9)0.0069 (8)
C110.0392 (11)0.0430 (10)0.0431 (10)0.0052 (8)0.0183 (9)0.0043 (8)
O10.0694 (10)0.0368 (7)0.0717 (10)0.0053 (7)0.0168 (8)0.0085 (7)
N40.0516 (12)0.0751 (13)0.0613 (11)0.0260 (10)0.0282 (9)0.0067 (9)
C70.0344 (10)0.0409 (9)0.0361 (9)0.0091 (7)0.0170 (8)0.0082 (7)
C120.0442 (11)0.0432 (10)0.0431 (10)0.0024 (8)0.0181 (9)0.0078 (8)
C180.0409 (11)0.0559 (11)0.0405 (10)0.0086 (9)0.0177 (9)0.0042 (8)
N20.0365 (9)0.0524 (9)0.0341 (8)0.0025 (7)0.0100 (7)0.0016 (7)
C20.0420 (11)0.0412 (10)0.0465 (11)0.0110 (8)0.0193 (9)0.0103 (8)
N30.0665 (13)0.0475 (10)0.0872 (13)0.0061 (9)0.0472 (11)0.0188 (9)
C210.0587 (14)0.0569 (12)0.0715 (14)0.0131 (10)0.0391 (12)0.0143 (10)
C10.0452 (11)0.0318 (9)0.0529 (11)0.0036 (8)0.0229 (9)0.0030 (8)
C60.0424 (11)0.0547 (11)0.0391 (10)0.0133 (9)0.0165 (9)0.0034 (8)
C260.0521 (13)0.0742 (14)0.0654 (14)0.0082 (11)0.0337 (11)0.0098 (11)
C50.0484 (13)0.0871 (16)0.0380 (11)0.0237 (11)0.0157 (9)0.0102 (10)
C40.0665 (15)0.0788 (16)0.0540 (13)0.0355 (12)0.0269 (12)0.0315 (11)
C30.0665 (14)0.0491 (11)0.0667 (14)0.0234 (10)0.0304 (12)0.0209 (10)
C220.092 (2)0.0648 (15)0.0916 (19)0.0074 (13)0.0534 (16)0.0264 (13)
C250.099 (2)0.125 (2)0.117 (2)0.064 (2)0.0545 (19)0.0001 (19)
C240.0710 (17)0.0829 (17)0.0834 (17)0.0393 (14)0.0322 (14)0.0044 (13)
C230.139 (3)0.0716 (18)0.117 (3)0.0130 (18)0.070 (2)0.0006 (17)
C280.0421 (12)0.0554 (12)0.0539 (12)0.0079 (9)0.0088 (10)0.0005 (9)
C270.0392 (12)0.0676 (13)0.0495 (12)0.0039 (10)0.0148 (9)0.0041 (9)
O30.0519 (9)0.0710 (9)0.0563 (9)0.0028 (7)0.0162 (7)0.0104 (7)
Geometric parameters (Å, º) top
O2—C151.375 (2)C2—C11.477 (3)
O2—C141.381 (2)N3—C221.452 (3)
C16—C151.388 (2)N3—H3A0.898 (16)
C16—C171.394 (3)C21—H21A0.9600
C16—H16A0.9300C21—H21B0.9600
C14—C91.376 (2)C21—H21C0.9600
C14—C131.388 (3)C6—C51.385 (3)
C10—C111.373 (3)C6—H6A0.9300
C10—C91.395 (2)C26—H26A0.9600
C10—H10A0.9300C26—H26B0.9600
C9—C81.510 (2)C26—H26C0.9600
C20—C151.378 (2)C5—C41.375 (3)
C20—C191.397 (2)C5—H5A0.9300
C20—C81.512 (2)C4—C31.378 (3)
N1—C11.346 (2)C4—H4B0.9300
N1—N21.399 (2)C3—H3B0.9300
N1—C81.487 (2)C22—C231.464 (4)
C8—C71.519 (2)C22—H22A0.9700
C13—C121.391 (3)C22—H22B0.9700
C13—H13A0.9300C25—C241.514 (3)
C17—N41.383 (2)C25—H25A0.9600
C17—C181.413 (3)C25—H25B0.9600
C19—C181.370 (2)C25—H25C0.9600
C19—H19A0.9300C24—H24A0.9700
C11—C121.418 (2)C24—H24B0.9700
C11—C211.506 (2)C23—H23A0.9600
O1—C11.229 (2)C23—H23B0.9600
N4—C241.426 (3)C23—H23C0.9600
N4—H4A0.872 (16)C28—O31.412 (2)
C7—C61.373 (2)C28—C271.493 (3)
C7—C21.376 (2)C28—H28A0.9700
C12—N31.386 (2)C28—H28B0.9700
C18—C261.502 (3)C27—H27A0.9700
N2—C271.465 (2)C27—H27B0.9700
N2—H2A0.892 (14)O3—H3C0.8200
C2—C31.390 (3)
C15—O2—C14118.45 (13)H21A—C21—H21B109.5
C15—C16—C17120.39 (17)C11—C21—H21C109.5
C15—C16—H16A119.8H21A—C21—H21C109.5
C17—C16—H16A119.8H21B—C21—H21C109.5
C9—C14—O2123.10 (16)O1—C1—N1125.40 (18)
C9—C14—C13121.84 (16)O1—C1—C2128.51 (17)
O2—C14—C13115.05 (15)N1—C1—C2106.06 (14)
C11—C10—C9124.05 (16)C7—C6—C5118.23 (18)
C11—C10—H10A118.0C7—C6—H6A120.9
C9—C10—H10A118.0C5—C6—H6A120.9
C14—C9—C10116.65 (16)C18—C26—H26A109.5
C14—C9—C8122.29 (15)C18—C26—H26B109.5
C10—C9—C8121.01 (14)H26A—C26—H26B109.5
C15—C20—C19116.72 (16)C18—C26—H26C109.5
C15—C20—C8122.27 (16)H26A—C26—H26C109.5
C19—C20—C8120.99 (15)H26B—C26—H26C109.5
C1—N1—N2124.66 (14)C4—C5—C6121.15 (19)
C1—N1—C8114.93 (14)C4—C5—H5A119.4
N2—N1—C8118.93 (13)C6—C5—H5A119.4
N1—C8—C9110.24 (13)C5—C4—C3120.93 (19)
N1—C8—C20111.05 (13)C5—C4—H4B119.5
C9—C8—C20110.54 (13)C3—C4—H4B119.5
N1—C8—C799.20 (12)C4—C3—C2117.61 (19)
C9—C8—C7113.69 (14)C4—C3—H3B121.2
C20—C8—C7111.64 (13)C2—C3—H3B121.2
O2—C15—C20123.17 (15)N3—C22—C23114.1 (2)
O2—C15—C16115.15 (15)N3—C22—H22A108.7
C20—C15—C16121.68 (17)C23—C22—H22A108.7
C14—C13—C12120.58 (16)N3—C22—H22B108.7
C14—C13—H13A119.7C23—C22—H22B108.7
C12—C13—H13A119.7H22A—C22—H22B107.6
N4—C17—C16121.86 (18)C24—C25—H25A109.5
N4—C17—C18118.95 (18)C24—C25—H25B109.5
C16—C17—C18119.18 (16)H25A—C25—H25B109.5
C18—C19—C20124.05 (17)C24—C25—H25C109.5
C18—C19—H19A118.0H25A—C25—H25C109.5
C20—C19—H19A118.0H25B—C25—H25C109.5
C10—C11—C12117.97 (16)N4—C24—C25110.7 (2)
C10—C11—C21121.09 (16)N4—C24—H24A109.5
C12—C11—C21120.90 (16)C25—C24—H24A109.5
C17—N4—C24123.02 (19)N4—C24—H24B109.5
C17—N4—H4A116.6 (15)C25—C24—H24B109.5
C24—N4—H4A118.1 (15)H24A—C24—H24B108.1
C6—C7—C2120.62 (16)C22—C23—H23A109.5
C6—C7—C8128.39 (15)C22—C23—H23B109.5
C2—C7—C8110.96 (15)H23A—C23—H23B109.5
N3—C12—C13122.25 (17)C22—C23—H23C109.5
N3—C12—C11118.83 (17)H23A—C23—H23C109.5
C13—C12—C11118.89 (16)H23B—C23—H23C109.5
C19—C18—C17117.97 (17)O3—C28—C27110.65 (16)
C19—C18—C26121.36 (18)O3—C28—H28A109.5
C17—C18—C26120.67 (17)C27—C28—H28A109.5
N1—N2—C27113.12 (14)O3—C28—H28B109.5
N1—N2—H2A105.2 (12)C27—C28—H28B109.5
C27—N2—H2A109.7 (13)H28A—C28—H28B108.1
C7—C2—C3121.43 (18)N2—C27—C28109.01 (16)
C7—C2—C1108.54 (15)N2—C27—H27A109.9
C3—C2—C1130.03 (17)C28—C27—H27A109.9
C12—N3—C22122.85 (18)N2—C27—H27B109.9
C12—N3—H3A117.2 (16)C28—C27—H27B109.9
C22—N3—H3A115.2 (16)H27A—C27—H27B108.3
C11—C21—H21A109.5C28—O3—H3C109.5
C11—C21—H21B109.5
C15—O2—C14—C94.9 (2)C9—C8—C7—C665.7 (2)
C15—O2—C14—C13176.33 (15)C20—C8—C7—C660.2 (2)
O2—C14—C9—C10179.82 (15)N1—C8—C7—C20.61 (17)
C13—C14—C9—C101.1 (3)C9—C8—C7—C2116.38 (16)
O2—C14—C9—C82.9 (3)C20—C8—C7—C2117.72 (16)
C13—C14—C9—C8178.39 (15)C14—C13—C12—N3178.99 (18)
C11—C10—C9—C141.2 (3)C14—C13—C12—C111.1 (3)
C11—C10—C9—C8178.52 (16)C10—C11—C12—N3178.97 (18)
C1—N1—C8—C9115.45 (16)C21—C11—C12—N31.2 (3)
N2—N1—C8—C951.36 (19)C10—C11—C12—C131.0 (3)
C1—N1—C8—C20121.68 (16)C21—C11—C12—C13176.80 (17)
N2—N1—C8—C2071.50 (18)C20—C19—C18—C171.0 (3)
C1—N1—C8—C74.12 (17)C20—C19—C18—C26179.60 (17)
N2—N1—C8—C7170.93 (14)N4—C17—C18—C19177.03 (17)
C14—C9—C8—N1124.27 (17)C16—C17—C18—C191.4 (3)
C10—C9—C8—N152.9 (2)N4—C17—C18—C262.4 (3)
C14—C9—C8—C201.1 (2)C16—C17—C18—C26179.15 (17)
C10—C9—C8—C20176.09 (14)C1—N1—N2—C2786.1 (2)
C14—C9—C8—C7125.37 (17)C8—N1—N2—C27108.48 (17)
C10—C9—C8—C757.4 (2)C6—C7—C2—C30.8 (3)
C15—C20—C8—N1125.88 (17)C8—C7—C2—C3177.32 (17)
C19—C20—C8—N155.7 (2)C6—C7—C2—C1179.23 (16)
C15—C20—C8—C93.2 (2)C8—C7—C2—C12.6 (2)
C19—C20—C8—C9178.44 (15)C13—C12—N3—C221.5 (3)
C15—C20—C8—C7124.42 (17)C11—C12—N3—C22179.4 (2)
C19—C20—C8—C754.0 (2)N2—N1—C1—O16.8 (3)
C14—O2—C15—C202.7 (2)C8—N1—C1—O1172.78 (17)
C14—O2—C15—C16178.35 (14)N2—N1—C1—C2171.77 (15)
C19—C20—C15—O2179.92 (15)C8—N1—C1—C25.82 (19)
C8—C20—C15—O21.5 (3)C7—C2—C1—O1173.45 (19)
C19—C20—C15—C161.0 (2)C3—C2—C1—O16.6 (3)
C8—C20—C15—C16177.45 (15)C7—C2—C1—N15.1 (2)
C17—C16—C15—O2179.53 (15)C3—C2—C1—N1174.85 (19)
C17—C16—C15—C200.5 (3)C2—C7—C6—C50.8 (3)
C9—C14—C13—C120.0 (3)C8—C7—C6—C5177.00 (17)
O2—C14—C13—C12178.83 (15)C7—C6—C5—C40.1 (3)
C15—C16—C17—N4177.69 (16)C6—C5—C4—C31.0 (3)
C15—C16—C17—C180.7 (3)C5—C4—C3—C21.0 (3)
C15—C20—C19—C180.2 (3)C7—C2—C3—C40.1 (3)
C8—C20—C19—C18178.24 (16)C1—C2—C3—C4179.86 (19)
C9—C10—C11—C120.2 (3)C12—N3—C22—C2379.0 (3)
C9—C10—C11—C21177.93 (17)C17—N4—C24—C25177.3 (2)
C16—C17—N4—C240.3 (3)N1—N2—C27—C28178.42 (14)
C18—C17—N4—C24178.14 (19)O3—C28—C27—N260.6 (2)
N1—C8—C7—C6177.36 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.90 (2)2.19 (2)3.044 (2)160 (2)
O3—H3C···O1ii0.821.982.770 (2)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC28H32N4O3
Mr472.58
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.3195 (18), 9.4770 (16), 15.384 (3)
α, β, γ (°)94.722 (18), 107.592 (13), 98.924 (13)
V3)1267.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8770, 4305, 3144
Rint0.024
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.07
No. of reflections4305
No. of parameters325
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.20

Computer programs: APEX2 (Bruker 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.898 (16)2.185 (18)3.044 (2)160 (2)
O3—H3C···O1ii0.821.982.770 (2)161.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+1.
 

Acknowledgements

Financial support in part by the Natural Science Foundation of China (20376010 and 20472012) and Shanxi Scholarship Council of China (200310) is gratefully acknowledged.

References

First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKo, S.-K., Yang, Y.-K., Tae, J. & Shin, I. (2006). J. Am. Chem. Soc. 128, 14150–14155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLakowicz, J. R. (2006). TITLE? 3rd ed., p. 67. New York:Springer.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D., Huang, W., Duan, C.-Y., Lin, Z.-H. & Meng, Q.-J. (2007). Inorg. Chem. 46, 1538–1540.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds