organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­droxy­adamantane-1-acetic acid

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.cn

(Received 28 May 2008; accepted 3 July 2008; online 6 August 2008)

The crystal structure of the title adamantane derivative, C12H18O3, has been determined by X-ray diffraction. The structure is stabilized by inter­molecular O—H⋯O hydrogen bonds, forming a chain.

Related literature

For related literature, see: Lu & Yang (1996[Lu, F. X. & Yang, Y. (1996). Handbook of Clinic Practical Drugs. Nanjing: Jiangsu Science and Technology Press.]); Tukada & Mochizuki (2005[Tukada, H. & Mochizuki, K. (2005). J. Mol. Struct. 655, 473-478.]); Zhao et al. (2003[Zhao, G. L., Feng, Y. L., Hu, X. C. & Kong, L. C. (2003). Chin. J. Appl. Chem. 20, 802-808.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18O3

  • Mr = 210.26

  • Triclinic, [P \overline 1]

  • a = 6.5120 (9) Å

  • b = 7.9485 (11) Å

  • c = 11.5469 (15) Å

  • α = 106.919 (10)°

  • β = 94.838 (10)°

  • γ = 104.443 (7)°

  • V = 545.73 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.30 × 0.13 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.98, Tmax = 0.99

  • 8786 measured reflections

  • 2488 independent reflections

  • 1574 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.130

  • S = 1.03

  • 2488 reflections

  • 142 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.815 (15) 1.995 (16) 2.7959 (18) 168 (2)
O2—H2⋯O1ii 0.850 (16) 1.811 (16) 2.649 (2) 168 (2)
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Adamantane and its derivatives have an extensive application in the field of medicine. For instance, adamantaneamine has an obvious effect on controlling the exuviating the influenza A virus and it can alleviate the Parkinson symptom (Lu et al., 1996). A large number of compounds containing amantadine have been synthesized (Tukada & Mochizuki, 2005; Zhao et al., 2003). Here we report the synthesis and crystal structure of the title compound (I), illustrated in Fig. 1.

The title compound (I) is an adamantane derivative. Single-crystal X-ray diffraction analyses demonstrate that hydrogen bonding produces an extensive polymeric network since the hydroxyl group substituents are simultaneously hydrogen bonded to the OH of the carboxyl group on an adjacent molecule and the carbonyl group of a different neighbor forming a 12-membered ring as shown in Fig. 2. A 16-membered ring is formed by intermolecular hydrogen bonding between the carbonyl O and hydroxyl H atoms of two molecules. The alternating 12- and 16-membered rings make the compound to form a one-dimensional network.

Related literature top

For related literature, see: Lu & Yang (1996); Tukada & Mochizuki (2005); Zhao et al. (2003).

Experimental top

The 3-hydroxy-1-adamantaneacetic was obtained from Zhejiang Key Laboratory for Reactive Chemistry on Solid Surface. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of distilled water.

Refinement top

The H atoms bonded to C atoms were positioned geometrically [C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.82 and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for the title compound. The O—H···O interactions are depicted by dashed lines.
3-Hydroxyadamantane-1-acetic acid top
Crystal data top
C12H18O3Z = 2
Mr = 210.26F(000) = 228
Triclinic, P1Dx = 1.280 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5120 (9) ÅCell parameters from 1598 reflections
b = 7.9485 (11) Åθ = 1.9–27.5°
c = 11.5469 (15) ŵ = 0.09 mm1
α = 106.919 (10)°T = 296 K
β = 94.838 (10)°Block, colourless
γ = 104.443 (7)°0.30 × 0.13 × 0.10 mm
V = 545.73 (13) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2488 independent reflections
Radiation source: fine-focus sealed tube1574 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.98, Tmax = 0.99k = 1010
8786 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.052P)2 + 0.1083P]
where P = (Fo2 + 2Fc2)/3
2488 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H18O3γ = 104.443 (7)°
Mr = 210.26V = 545.73 (13) Å3
Triclinic, P1Z = 2
a = 6.5120 (9) ÅMo Kα radiation
b = 7.9485 (11) ŵ = 0.09 mm1
c = 11.5469 (15) ÅT = 296 K
α = 106.919 (10)°0.30 × 0.13 × 0.10 mm
β = 94.838 (10)°
Data collection top
Bruker APEXII area-detector
diffractometer
2488 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1574 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.033
8786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
2488 reflectionsΔρmin = 0.17 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0947 (2)0.76522 (17)0.09607 (12)0.0581 (4)
H10.024 (3)0.690 (3)0.1232 (19)0.070*
O20.5777 (2)1.30404 (19)0.01092 (13)0.0620 (4)
H20.694 (3)1.295 (3)0.015 (2)0.074*
O30.7982 (2)1.51594 (19)0.17220 (13)0.0647 (4)
C40.0106 (3)0.9805 (3)0.26199 (16)0.0462 (4)
H4B0.06790.88580.29760.055*
H4A0.12580.98360.20430.055*
C90.3516 (3)0.9321 (2)0.28586 (16)0.0444 (4)
H9B0.46650.90270.24310.053*
H9A0.29790.83770.32230.053*
C30.1714 (3)0.9376 (2)0.19572 (15)0.0392 (4)
C20.2580 (3)1.0849 (2)0.13783 (15)0.0387 (4)
H2B0.14411.08710.07900.046*
H2A0.37241.05620.09430.046*
C80.5237 (3)1.2664 (2)0.32771 (15)0.0413 (4)
H8B0.58041.38500.39130.050*
H8A0.63991.23910.28540.050*
C70.4377 (3)1.1188 (2)0.38625 (16)0.0441 (4)
H7A0.55411.11540.44440.053*
C60.2554 (3)1.1612 (3)0.45363 (16)0.0494 (5)
H6B0.20121.06760.49060.059*
H6A0.30861.27870.51850.059*
C50.0756 (3)1.1668 (2)0.36319 (16)0.0458 (5)
H5A0.04111.19490.40650.055*
C100.1616 (3)1.3152 (2)0.30564 (17)0.0464 (5)
H10B0.21461.43380.36940.056*
H10A0.04621.32030.24910.056*
C10.3444 (3)1.2738 (2)0.23674 (14)0.0352 (4)
C110.4224 (3)1.4276 (2)0.18016 (16)0.0457 (5)
H11A0.30651.42010.11860.055*
H11B0.45221.54520.24410.055*
C120.6181 (3)1.4222 (2)0.12218 (16)0.0436 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0652 (10)0.0397 (7)0.0542 (8)0.0080 (6)0.0268 (7)0.0076 (6)
O20.0614 (10)0.0572 (9)0.0552 (9)0.0018 (7)0.0240 (7)0.0091 (7)
O30.0584 (10)0.0567 (9)0.0637 (9)0.0088 (7)0.0151 (7)0.0171 (7)
C40.0361 (10)0.0536 (11)0.0504 (11)0.0072 (8)0.0157 (8)0.0217 (9)
C90.0466 (11)0.0412 (10)0.0567 (11)0.0145 (8)0.0201 (9)0.0279 (8)
C30.0391 (10)0.0350 (9)0.0390 (9)0.0028 (7)0.0129 (7)0.0099 (7)
C20.0364 (10)0.0412 (9)0.0369 (9)0.0050 (7)0.0088 (7)0.0147 (7)
C80.0393 (10)0.0392 (9)0.0429 (9)0.0043 (8)0.0046 (8)0.0162 (8)
C70.0427 (11)0.0492 (10)0.0432 (10)0.0095 (8)0.0026 (8)0.0237 (8)
C60.0646 (13)0.0448 (10)0.0387 (10)0.0092 (9)0.0153 (9)0.0171 (8)
C50.0464 (11)0.0484 (10)0.0510 (11)0.0180 (9)0.0251 (9)0.0202 (9)
C100.0498 (11)0.0471 (10)0.0519 (11)0.0210 (9)0.0181 (9)0.0218 (9)
C10.0360 (9)0.0351 (9)0.0392 (9)0.0098 (7)0.0110 (7)0.0179 (7)
C110.0564 (12)0.0384 (10)0.0507 (10)0.0156 (9)0.0175 (9)0.0228 (8)
C120.0575 (13)0.0317 (9)0.0449 (10)0.0066 (9)0.0153 (9)0.0208 (8)
Geometric parameters (Å, º) top
O1—C31.447 (2)C8—C71.532 (2)
O1—H10.815 (15)C8—H8B0.9700
O2—C121.311 (2)C8—H8A0.9700
O2—H20.850 (16)C7—C61.527 (3)
O3—C121.210 (2)C7—H7A0.9800
C4—C31.519 (2)C6—C51.520 (3)
C4—C51.530 (2)C6—H6B0.9700
C4—H4B0.9700C6—H6A0.9700
C4—H4A0.9700C5—C101.529 (2)
C9—C31.519 (2)C5—H5A0.9800
C9—C71.528 (2)C10—C11.536 (2)
C9—H9B0.9700C10—H10B0.9700
C9—H9A0.9700C10—H10A0.9700
C3—C21.525 (2)C1—C111.546 (2)
C2—C11.532 (2)C11—C121.493 (2)
C2—H2B0.9700C11—H11A0.9700
C2—H2A0.9700C11—H11B0.9700
C8—C11.528 (2)
C3—O1—H1107.3 (15)C9—C7—H7A109.5
C12—O2—H2110.6 (16)C8—C7—H7A109.5
C3—C4—C5109.05 (14)C5—C6—C7109.37 (13)
C3—C4—H4B109.9C5—C6—H6B109.8
C5—C4—H4B109.9C7—C6—H6B109.8
C3—C4—H4A109.9C5—C6—H6A109.8
C5—C4—H4A109.9C7—C6—H6A109.8
H4B—C4—H4A108.3H6B—C6—H6A108.2
C3—C9—C7109.47 (13)C6—C5—C10109.57 (15)
C3—C9—H9B109.8C6—C5—C4109.75 (14)
C7—C9—H9B109.8C10—C5—C4109.33 (14)
C3—C9—H9A109.8C6—C5—H5A109.4
C7—C9—H9A109.8C10—C5—H5A109.4
H9B—C9—H9A108.2C4—C5—H5A109.4
O1—C3—C9110.50 (14)C5—C10—C1110.38 (13)
O1—C3—C4110.82 (13)C5—C10—H10B109.6
C9—C3—C4109.93 (14)C1—C10—H10B109.6
O1—C3—C2106.48 (13)C5—C10—H10A109.6
C9—C3—C2109.35 (13)C1—C10—H10A109.6
C4—C3—C2109.69 (14)H10B—C10—H10A108.1
C3—C2—C1110.46 (12)C8—C1—C2108.35 (13)
C3—C2—H2B109.6C8—C1—C10108.54 (13)
C1—C2—H2B109.6C2—C1—C10108.65 (14)
C3—C2—H2A109.6C8—C1—C11111.84 (14)
C1—C2—H2A109.6C2—C1—C11111.65 (13)
H2B—C2—H2A108.1C10—C1—C11107.71 (13)
C1—C8—C7110.32 (13)C12—C11—C1115.10 (13)
C1—C8—H8B109.6C12—C11—H11A108.5
C7—C8—H8B109.6C1—C11—H11A108.5
C1—C8—H8A109.6C12—C11—H11B108.5
C7—C8—H8A109.6C1—C11—H11B108.5
H8B—C8—H8A108.1H11A—C11—H11B107.5
C6—C7—C9108.98 (14)O3—C12—O2122.43 (17)
C6—C7—C8109.93 (14)O3—C12—C11123.93 (17)
C9—C7—C8109.30 (13)O2—C12—C11113.63 (17)
C6—C7—H7A109.5
C7—C9—C3—O1176.98 (12)C3—C4—C5—C1060.50 (18)
C7—C9—C3—C460.38 (17)C6—C5—C10—C160.28 (19)
C7—C9—C3—C260.09 (17)C4—C5—C10—C160.04 (19)
C5—C4—C3—O1177.88 (13)C7—C8—C1—C259.16 (17)
C5—C4—C3—C959.68 (17)C7—C8—C1—C1058.66 (17)
C5—C4—C3—C260.59 (18)C7—C8—C1—C11177.35 (14)
O1—C3—C2—C1179.80 (13)C3—C2—C1—C859.39 (17)
C9—C3—C2—C160.39 (17)C3—C2—C1—C1058.36 (17)
C4—C3—C2—C160.23 (18)C3—C2—C1—C11177.01 (14)
C3—C9—C7—C660.25 (16)C5—C10—C1—C859.19 (18)
C3—C9—C7—C859.91 (18)C5—C10—C1—C258.44 (18)
C1—C8—C7—C659.55 (18)C5—C10—C1—C11179.54 (14)
C1—C8—C7—C960.02 (18)C8—C1—C11—C1253.8 (2)
C9—C7—C6—C560.32 (17)C2—C1—C11—C1267.8 (2)
C8—C7—C6—C559.45 (18)C10—C1—C11—C12172.94 (15)
C7—C6—C5—C1059.72 (18)C1—C11—C12—O398.6 (2)
C7—C6—C5—C460.34 (18)C1—C11—C12—O280.82 (19)
C3—C4—C5—C659.71 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.82 (2)2.00 (2)2.7959 (18)168 (2)
O2—H2···O1ii0.85 (2)1.81 (2)2.649 (2)168 (2)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC12H18O3
Mr210.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.5120 (9), 7.9485 (11), 11.5469 (15)
α, β, γ (°)106.919 (10), 94.838 (10), 104.443 (7)
V3)545.73 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.13 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
8786, 2488, 1574
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.03
No. of reflections2488
No. of parameters142
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.815 (15)1.995 (16)2.7959 (18)168 (2)
O2—H2···O1ii0.850 (16)1.811 (16)2.649 (2)168 (2)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+2, z.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, F. X. & Yang, Y. (1996). Handbook of Clinic Practical Drugs. Nanjing: Jiangsu Science and Technology Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTukada, H. & Mochizuki, K. (2005). J. Mol. Struct. 655, 473–478.  Web of Science CSD CrossRef Google Scholar
First citationZhao, G. L., Feng, Y. L., Hu, X. C. & Kong, L. C. (2003). Chin. J. Appl. Chem. 20, 802–808.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds