organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(3,5-Di­methyl­pyrazol-1-yl)meth­yl]phthalimide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and cDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 11 July 2008; accepted 5 August 2008; online 9 August 2008)

The title compound {systematic name: 2-[(3,5-dimenthylpyrazol-1-yl)meth­yl]isoindole-1,3-dione}, C14H13N3O2, was prepared by reaction of N-(bromo­meth­yl)phthalimide and 3,5-dimethyl­pyrazole in chloro­form solution. The mol­ecular structure and packing are stabilized by intra­molecular C—H⋯O hydrogen-bonding and C—H⋯π inter­actions.

Related literature

For related literature, see: Jian et al. (2003[Jian, F. F., Li, Y., Xiao, H. L. & Sun, P. P. (2003). Struct. Chem. 22, 687-690.], 2004[Jian, F.-F., Xiao, H.-L., Qin, Y.-Q. & Xu, L.-Z. (2004). Acta Cryst. C60, o492-o493.]); Barszcz et al. (2004[Barszcz, B., Glowiak, T., Jezierska, J. & Tomkiewicz, A. (2004). Polyhedron, 23, 1309-1316.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O2

  • Mr = 255.27

  • Monoclinic, P 21 /c

  • a = 12.285 (2) Å

  • b = 8.4576 (15) Å

  • c = 15.6162 (19) Å

  • β = 127.566 (8)°

  • V = 1286.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 8080 measured reflections

  • 3090 independent reflections

  • 1464 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.178

  • S = 0.98

  • 3090 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O1 0.97 2.58 2.917 (3) 101
C11—H11ACg2i 0.93 2.96 3.723 (3) 140
Symmetry code: (i) -x+1, -y-1, -z. Cg2 is the centroid of atoms N2,N3,C2–C4.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 3,5-dimethyl pyrazole and its derivatives are of considerable interest as the ligands in many biological systems in which they procvide the potential binding site for metal ions (Barszcz et al., 2004). In our search for new ligands of this type, we have synthesized the title compound (I), and describe its structure here.

In the crystal structure of (I) (Fig. 1), the CO bond length [1.206 (3) Å), (1.208 (3) Å] and the C—N bond length [1.397 (2) Å), (1.396 (3) Å] (Table 1) are in agreement with those observed before (Jian et al., 2004; Jian et al., 2003). The dihedral angle formed by the ring A (N1/C7/C8/C13/C14) and the ring C (C8–C13) is 1.3 (0)°. The dihedral angles formed by the ring A and ring C with the ring B (N2/N3/C2–C4) are 72.0 (1) and 72.0 (4)°, respectively. There is a C—H···O intramolecular interaction (see table 2). The molecular structure is also stabilized by intermolecular C—H···π interactions (Table 2).

Related literature top

For related literature, see: Jian et al. (2003, 2004); Barszcz et al. (2004).

Experimental top

N-bromomethyl phthalic imidine 7.2 g (0.03 mol) and 3,5-dimethyl pyrazole 2.88 g (0.03 mol) were dissolved in 30 ml chloroform. The solution was cooled to 283 K. Then, 4.4 ml (0.03 mol) triethylamine was added dropwise via cannula into the well stirred solution The reaction mixture was stirred at 283 K for 6 h. Then the solution was continued to stir at room temperature about 17 h. 20 ml water was added into the solution, the organic phase was seperated and dryed with anhydrous potassium carbonate, The colourless organic phase was evaporated. The title compound is afforded in 65% yield. The colourless crystals of suitable for X-ray determination were obtained from anhydrous ethanol at room temperature after two days.

Refinement top

H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97Å, and with Uiso(H)=1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.
2-[(3,5-Dimethylpyrazol-1-yl)methyl]isoindole-1,3-dione top
Crystal data top
C14H13N3O2F(000) = 536
Mr = 255.27Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1464 reflections
a = 12.285 (2) Åθ = 2.1–28.2°
b = 8.4576 (15) ŵ = 0.09 mm1
c = 15.6162 (19) ÅT = 293 K
β = 127.566 (8)°Block, yellow
V = 1286.1 (3) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1464 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 28.2°, θmin = 2.1°
ϕ and ω scansh = 1613
8080 measured reflectionsk = 1011
3090 independent reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0831P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3090 reflectionsΔρmax = 0.33 e Å3
173 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.051 (6)
Crystal data top
C14H13N3O2V = 1286.1 (3) Å3
Mr = 255.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.285 (2) ŵ = 0.09 mm1
b = 8.4576 (15) ÅT = 293 K
c = 15.6162 (19) Å0.20 × 0.15 × 0.10 mm
β = 127.566 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1464 reflections with I > 2σ(I)
8080 measured reflectionsRint = 0.060
3090 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 0.98Δρmax = 0.33 e Å3
3090 reflectionsΔρmin = 0.21 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66997 (19)0.2663 (2)0.13413 (14)0.0613 (6)
O20.38437 (19)0.1191 (2)0.05358 (15)0.0610 (6)
N10.50763 (19)0.1704 (2)0.11721 (15)0.0443 (5)
N20.3078 (2)0.1271 (2)0.30016 (15)0.0481 (6)
N30.3112 (2)0.2458 (2)0.35815 (16)0.0508 (6)
C10.1467 (3)0.0376 (4)0.2904 (2)0.0729 (9)
H1A0.23090.08330.22970.109*
H1B0.09650.00580.26720.109*
H1C0.09250.11780.34390.109*
C20.1782 (3)0.0900 (3)0.3378 (2)0.0520 (7)
C30.0937 (3)0.1884 (3)0.4239 (2)0.0575 (7)
H3B0.00160.19220.46690.069*
C40.1783 (3)0.2813 (3)0.4344 (2)0.0524 (7)
C50.1404 (3)0.4075 (4)0.5153 (2)0.0737 (9)
H5A0.22230.45020.50130.111*
H5B0.08330.36320.58670.111*
H5C0.09140.49010.50990.111*
C60.4354 (2)0.0637 (3)0.20848 (18)0.0486 (6)
H6A0.41760.03450.18700.058*
H6B0.49370.03970.22920.058*
C70.6197 (2)0.2631 (3)0.0875 (2)0.0442 (6)
C80.6612 (2)0.3498 (3)0.01092 (18)0.0460 (6)
C90.7624 (3)0.4605 (3)0.0711 (2)0.0611 (8)
H9A0.81830.49370.05310.073*
C100.7773 (3)0.5210 (4)0.1611 (2)0.0708 (9)
H10A0.84460.59660.20380.085*
C110.6954 (3)0.4717 (4)0.1882 (2)0.0685 (9)
H11A0.70980.51210.24980.082*
C120.5915 (3)0.3625 (3)0.12510 (19)0.0561 (7)
H12A0.53420.33060.14200.067*
C130.5765 (2)0.3033 (3)0.03664 (18)0.0439 (6)
C140.4762 (3)0.1880 (3)0.04554 (19)0.0454 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0654 (12)0.0772 (13)0.0586 (11)0.0047 (10)0.0467 (11)0.0022 (9)
O20.0650 (12)0.0651 (12)0.0718 (12)0.0080 (10)0.0515 (11)0.0043 (10)
N10.0474 (12)0.0503 (12)0.0403 (11)0.0032 (10)0.0294 (10)0.0019 (9)
N20.0492 (12)0.0535 (13)0.0422 (11)0.0021 (10)0.0282 (10)0.0022 (10)
N30.0583 (14)0.0535 (13)0.0446 (12)0.0000 (11)0.0333 (12)0.0004 (10)
C10.0560 (18)0.082 (2)0.073 (2)0.0076 (16)0.0352 (16)0.0100 (17)
C20.0488 (15)0.0574 (16)0.0486 (14)0.0033 (13)0.0290 (13)0.0018 (13)
C30.0465 (15)0.0656 (18)0.0539 (16)0.0002 (14)0.0272 (14)0.0010 (14)
C40.0558 (16)0.0550 (16)0.0448 (14)0.0043 (13)0.0298 (14)0.0034 (12)
C50.075 (2)0.075 (2)0.0697 (18)0.0117 (17)0.0434 (17)0.0163 (17)
C60.0504 (15)0.0524 (15)0.0419 (14)0.0034 (12)0.0276 (13)0.0003 (12)
C70.0455 (14)0.0481 (14)0.0425 (13)0.0036 (11)0.0287 (12)0.0064 (11)
C80.0428 (14)0.0493 (15)0.0407 (13)0.0045 (12)0.0227 (12)0.0046 (12)
C90.0532 (17)0.0645 (18)0.0576 (17)0.0062 (14)0.0297 (14)0.0038 (15)
C100.0634 (19)0.064 (2)0.0615 (19)0.0063 (15)0.0261 (16)0.0135 (15)
C110.078 (2)0.072 (2)0.0461 (16)0.0097 (17)0.0329 (16)0.0050 (15)
C120.0666 (18)0.0576 (17)0.0447 (14)0.0142 (14)0.0343 (14)0.0067 (13)
C130.0479 (14)0.0455 (14)0.0375 (13)0.0073 (11)0.0256 (12)0.0054 (11)
C140.0471 (14)0.0521 (15)0.0413 (13)0.0039 (12)0.0292 (12)0.0051 (12)
Geometric parameters (Å, º) top
O1—O10.000 (5)C5—H5A0.9600
O1—C71.208 (3)C5—H5B0.9600
O2—C141.206 (3)C5—H5C0.9600
N1—C71.396 (3)C6—H6A0.9700
N1—C141.397 (3)C6—H6B0.9700
N1—C61.446 (3)C7—O11.208 (3)
N2—C21.355 (3)C7—C81.485 (3)
N2—N31.369 (3)C8—C91.372 (3)
N2—C61.435 (3)C8—C131.382 (3)
N3—C41.343 (3)C9—C101.399 (4)
C1—C21.487 (4)C9—H9A0.9300
C1—H1A0.9600C10—C111.373 (4)
C1—H1B0.9600C10—H10A0.9300
C1—H1C0.9600C11—C121.385 (4)
C2—C31.370 (4)C11—H11A0.9300
C3—C41.390 (4)C12—C131.372 (3)
C3—H3B0.9300C12—H12A0.9300
C4—C51.495 (4)C13—C141.479 (4)
O1—O1—C70 (10)N1—C6—H6A109.0
C7—N1—C14111.9 (2)N2—C6—H6B109.0
C7—N1—C6124.48 (19)N1—C6—H6B109.0
C14—N1—C6123.6 (2)H6A—C6—H6B107.8
C2—N2—N3112.6 (2)O1—C7—O10.00 (8)
C2—N2—C6128.8 (2)O1—C7—N1125.1 (2)
N3—N2—C6118.6 (2)O1—C7—N1125.1 (2)
C4—N3—N2103.8 (2)O1—C7—C8129.3 (2)
C2—C1—H1A109.5O1—C7—C8129.3 (2)
C2—C1—H1B109.5N1—C7—C8105.5 (2)
H1A—C1—H1B109.5C9—C8—C13121.6 (2)
C2—C1—H1C109.5C9—C8—C7129.9 (2)
H1A—C1—H1C109.5C13—C8—C7108.5 (2)
H1B—C1—H1C109.5C8—C9—C10116.5 (3)
N2—C2—C3105.8 (2)C8—C9—H9A121.7
N2—C2—C1123.1 (2)C10—C9—H9A121.7
C3—C2—C1131.1 (2)C11—C10—C9121.8 (3)
C2—C3—C4106.6 (2)C11—C10—H10A119.1
C2—C3—H3B126.7C9—C10—H10A119.1
C4—C3—H3B126.7C10—C11—C12120.9 (3)
N3—C4—C3111.2 (2)C10—C11—H11A119.5
N3—C4—C5119.5 (2)C12—C11—H11A119.5
C3—C4—C5129.3 (2)C13—C12—C11117.4 (3)
C4—C5—H5A109.5C13—C12—H12A121.3
C4—C5—H5B109.5C11—C12—H12A121.3
H5A—C5—H5B109.5C12—C13—C8121.7 (3)
C4—C5—H5C109.5C12—C13—C14130.1 (2)
H5A—C5—H5C109.5C8—C13—C14108.2 (2)
H5B—C5—H5C109.5O2—C14—N1124.3 (2)
N2—C6—N1112.99 (19)O2—C14—C13129.8 (2)
N2—C6—H6A109.0N1—C14—C13105.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O10.972.582.917 (3)101
C11—H11A···Cg2i0.932.963.723 (3)140
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC14H13N3O2
Mr255.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.285 (2), 8.4576 (15), 15.6162 (19)
β (°) 127.566 (8)
V3)1286.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8080, 3090, 1464
Rint0.060
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.178, 0.98
No. of reflections3090
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O10.972.582.917 (3)100.6
C11—H11A···Cg2i0.932.963.723 (3)140
Symmetry code: (i) x+1, y1, z.
 

References

First citationBarszcz, B., Glowiak, T., Jezierska, J. & Tomkiewicz, A. (2004). Polyhedron, 23, 1309–1316.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJian, F. F., Li, Y., Xiao, H. L. & Sun, P. P. (2003). Struct. Chem. 22, 687–690.  CAS Google Scholar
First citationJian, F.-F., Xiao, H.-L., Qin, Y.-Q. & Xu, L.-Z. (2004). Acta Cryst. C60, o492–o493.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds