organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[1-(4-Nitro­phen­yl)ethyl­­idene]thio­semicarbazide

aMicroscale Science Institute, Bioengineering School, Weifang University, Weifang 261061, People's Republic of China, bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and cNumber Seven Middle School, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 14 July 2008; accepted 5 August 2008; online 9 August 2008)

The title compound, C9H10N4O2S, was prepared by the reaction of 1-(4-nitro­phen­yl)ethanone and thio­semicarbazide in ethanol at 367 K. There are weak inter­molecular N—H⋯S and N—H⋯O hydrogen-bonding inter­actions in the crystal structure involving the amine and nitrile groups, respectively, as donors.

Related literature

For related literature, see: Jian et al. (2006[Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198-o3199.]); Qin et al. (2006[Qin, Y.-Q., Ren, X.-Y., Liang, T.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o5215-o5216.]); Rozwadowski et al. (1999[Rozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809-2817.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N4O2S

  • Mr = 238.27

  • Triclinic, [P \overline 1]

  • a = 7.4450 (15) Å

  • b = 9.3180 (19) Å

  • c = 9.4050 (19) Å

  • α = 62.08 (3)°

  • β = 76.41 (3)°

  • γ = 69.02 (3)°

  • V = 536.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 2493 measured reflections

  • 2307 independent reflections

  • 1776 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.140

  • S = 1.08

  • 2307 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯S1i 0.86 2.74 3.581 (2) 166
N4—H4A⋯O1ii 0.86 2.35 3.101 (3) 146
N4—H4B⋯O2iii 0.86 2.29 3.133 (3) 166
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y, -z+2; (iii) x-1, y+1, z-1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Jian et al., 2006). Schiff bases show biochemical and pharmacological applications. The growing interest in Schiff bases lately is also due to their ability to form intramolecular hydrogen bonds by electron coupling between acid-base centers (Rozwadowski et al.,1999). The title compound (I), was synthesized and we report here its crystal structure

In the crystal structure of (I) (Fig. 1). The C6–C9/N2/N3/S1 plane makes a dihedral angle of 19.78 (127)° with the benzene ring (C1—C6). The CN bond length [1.281 (3) Å] and CS bond length [1.685 (2) Å] are in agreement with those observed before (Jian et al., 2006; Qin et al., 2006). There are intermolecular N–H···S and N–H···O hydrogen-bond interactions to stabilize the crystal structure (Table 1).

Related literature top

For related literature, see: Jian et al. (2006); Qin et al. (2006); Rozwadowski et al. (1999).

Experimental top

A mixture of hydrochloric acid 0.6 mL (0.02 mol) and thiosemicarbazide 1.8 g (0.02 mol) was stirred with ethanol (50 mL) at 293 K for 2 h, then add 1-(4-nitrophenyl)ethanone 3.3 g (0.02 mol), then afford the title compound [4.17 g, yield: 87.6%]. Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone and ethanol(1:1) at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with Uiso=1.2 or 1.5Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
1-[1-(4-Nitrophenyl)ethylidene]thiosemicarbazide top
Crystal data top
C9H10N4O2SZ = 2
Mr = 238.27F(000) = 248
Triclinic, P1Dx = 1.475 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4450 (15) ÅCell parameters from 1776 reflections
b = 9.3180 (19) Åθ = 2.5–27.0°
c = 9.4050 (19) ŵ = 0.29 mm1
α = 62.08 (3)°T = 293 K
β = 76.41 (3)°Block, yellow
γ = 69.02 (3)°0.20 × 0.15 × 0.10 mm
V = 536.5 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1776 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.0°, θmin = 2.5°
ϕ and ω scansh = 08
2493 measured reflectionsk = 1111
2307 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.1605P]
where P = (Fo2 + 2Fc2)/3
2307 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C9H10N4O2Sγ = 69.02 (3)°
Mr = 238.27V = 536.5 (3) Å3
Triclinic, P1Z = 2
a = 7.4450 (15) ÅMo Kα radiation
b = 9.3180 (19) ŵ = 0.29 mm1
c = 9.4050 (19) ÅT = 293 K
α = 62.08 (3)°0.20 × 0.15 × 0.10 mm
β = 76.41 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1776 reflections with I > 2σ(I)
2493 measured reflectionsRint = 0.026
2307 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.08Δρmax = 0.39 e Å3
2307 reflectionsΔρmin = 0.38 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18728 (10)0.97254 (7)0.38617 (7)0.0483 (2)
O10.2761 (3)0.3046 (2)1.2287 (3)0.0697 (6)
O20.4183 (3)0.2729 (2)1.3830 (2)0.0680 (6)
N10.3337 (3)0.2167 (2)1.2626 (2)0.0472 (5)
N20.0574 (3)0.5445 (2)0.7336 (2)0.0373 (4)
N30.0128 (3)0.7117 (2)0.6222 (2)0.0394 (4)
H3A0.07440.77780.61440.047*
N40.2206 (3)0.6599 (2)0.5464 (2)0.0521 (5)
H4A0.18760.55730.61900.063*
H4B0.31210.69180.48730.063*
C10.1766 (3)0.1958 (3)0.9090 (3)0.0392 (5)
H1A0.11820.23810.81450.047*
C20.2135 (3)0.0244 (3)1.0120 (3)0.0410 (5)
H2B0.18130.04850.98710.049*
C30.2990 (3)0.0353 (2)1.1521 (3)0.0364 (5)
C40.3527 (3)0.0684 (3)1.1924 (3)0.0415 (5)
H4C0.41090.02491.28730.050*
C50.3167 (3)0.2400 (3)1.0864 (3)0.0397 (5)
H5A0.35370.31121.11000.048*
C60.2260 (3)0.3065 (2)0.9453 (2)0.0337 (4)
C70.1848 (3)0.4909 (2)0.8317 (3)0.0371 (5)
C80.2907 (4)0.5977 (3)0.8389 (4)0.0631 (8)
H8A0.24780.71200.75890.095*
H8B0.42680.55210.81850.095*
H8C0.26490.59720.94410.095*
C90.1299 (3)0.7696 (3)0.5255 (3)0.0384 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0686 (4)0.0278 (3)0.0474 (4)0.0157 (3)0.0254 (3)0.0044 (2)
O10.0890 (15)0.0312 (9)0.0844 (14)0.0239 (9)0.0267 (11)0.0073 (9)
O20.0795 (14)0.0444 (10)0.0588 (11)0.0168 (9)0.0295 (10)0.0051 (9)
N10.0442 (11)0.0309 (9)0.0534 (12)0.0102 (8)0.0077 (9)0.0062 (8)
N20.0450 (10)0.0227 (8)0.0400 (9)0.0076 (7)0.0105 (8)0.0084 (7)
N30.0478 (10)0.0242 (8)0.0446 (10)0.0109 (7)0.0151 (8)0.0078 (7)
N40.0678 (14)0.0332 (10)0.0558 (12)0.0205 (9)0.0276 (10)0.0047 (9)
C10.0448 (12)0.0296 (10)0.0433 (11)0.0090 (8)0.0139 (9)0.0120 (9)
C20.0468 (12)0.0285 (10)0.0513 (13)0.0119 (9)0.0106 (10)0.0158 (9)
C30.0352 (11)0.0254 (9)0.0404 (11)0.0070 (8)0.0027 (8)0.0088 (8)
C40.0462 (12)0.0361 (11)0.0392 (11)0.0105 (9)0.0112 (9)0.0109 (9)
C50.0481 (12)0.0296 (10)0.0444 (12)0.0100 (9)0.0119 (9)0.0152 (9)
C60.0347 (10)0.0242 (9)0.0400 (11)0.0063 (8)0.0064 (8)0.0119 (8)
C70.0404 (11)0.0249 (9)0.0442 (11)0.0068 (8)0.0093 (9)0.0124 (9)
C80.0745 (18)0.0316 (11)0.0821 (19)0.0198 (12)0.0407 (15)0.0044 (12)
C90.0481 (12)0.0284 (10)0.0379 (11)0.0111 (9)0.0093 (9)0.0108 (8)
Geometric parameters (Å, º) top
S1—C91.685 (2)C1—H1A0.9300
O1—N11.231 (3)C2—C31.381 (3)
O2—N11.224 (3)C2—H2B0.9300
N1—C31.473 (3)C3—C41.389 (3)
N2—C71.281 (3)C4—C51.395 (3)
N2—N31.379 (2)C4—H4C0.9300
N3—C91.353 (3)C5—C61.397 (3)
N3—H3A0.8600C5—H5A0.9300
N4—C91.336 (3)C6—C71.498 (3)
N4—H4A0.8600C7—C81.506 (3)
N4—H4B0.8600C8—H8A0.9600
C1—C21.388 (3)C8—H8B0.9600
C1—C61.406 (3)C8—H8C0.9600
O2—N1—O1123.1 (2)C3—C4—H4C121.0
O2—N1—C3118.7 (2)C5—C4—H4C121.0
O1—N1—C3118.15 (19)C4—C5—C6121.2 (2)
C7—N2—N3119.08 (18)C4—C5—H5A119.4
C9—N3—N2118.64 (17)C6—C5—H5A119.4
C9—N3—H3A120.7C5—C6—C1118.60 (18)
N2—N3—H3A120.7C5—C6—C7121.53 (18)
C9—N4—H4A120.0C1—C6—C7119.86 (18)
C9—N4—H4B120.0N2—C7—C6114.93 (18)
H4A—N4—H4B120.0N2—C7—C8125.16 (19)
C2—C1—C6121.03 (19)C6—C7—C8119.91 (18)
C2—C1—H1A119.5C7—C8—H8A109.5
C6—C1—H1A119.5C7—C8—H8B109.5
C3—C2—C1118.5 (2)H8A—C8—H8B109.5
C3—C2—H2B120.8C7—C8—H8C109.5
C1—C2—H2B120.8H8A—C8—H8C109.5
C2—C3—C4122.67 (19)H8B—C8—H8C109.5
C2—C3—N1118.13 (19)N4—C9—N3117.19 (18)
C4—C3—N1119.20 (19)N4—C9—S1122.63 (17)
C3—C4—C5118.0 (2)N3—C9—S1120.19 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.862.743.581 (2)166
N4—H4A···O1ii0.862.353.101 (3)146
N4—H4B···O2iii0.862.293.133 (3)166
Symmetry codes: (i) x, y+2, z+1; (ii) x, y, z+2; (iii) x1, y+1, z1.

Experimental details

Crystal data
Chemical formulaC9H10N4O2S
Mr238.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4450 (15), 9.3180 (19), 9.4050 (19)
α, β, γ (°)62.08 (3), 76.41 (3), 69.02 (3)
V3)536.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2493, 2307, 1776
Rint0.026
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.08
No. of reflections2307
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.38

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.862.743.581 (2)166.4
N4—H4A···O1ii0.862.353.101 (3)145.5
N4—H4B···O2iii0.862.293.133 (3)166.2
Symmetry codes: (i) x, y+2, z+1; (ii) x, y, z+2; (iii) x1, y+1, z1.
 

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198–o3199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQin, Y.-Q., Ren, X.-Y., Liang, T.-L. & Jian, F.-F. (2006). Acta Cryst. E62, o5215–o5216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809–2817.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds