organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl­piperidine-1-carbo­thio­amide

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 23 July 2008; accepted 5 August 2008; online 13 August 2008)

The title compound, C12H16N2S, was prepared by the reaction of with phenyl isothio­cyanate and piperidine. In the crystal structure, the mol­ecule exhibits inter­molecular N—H⋯S hydrogen bonds and weak intra­molecular C—H⋯S and C—H⋯N hydrogen-bonding inter­actions.

Related literature

For related literature, see: Casas et al. (2002[Casas, J. S., Castano, M. V. & Castellano, E. E. (2002). Inorg. Chem. 41, 1550-1557.]); Cowley et al. (2002[Cowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc. 124, 5270-5271.]); Toshiaki et al. (2003[Toshiaki, M., Hideo, A. & Yoshiharu, Y. (2003). J. Org. Chem. 68, 8514-8519.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2S

  • Mr = 220.33

  • Monoclinic, P 21 /c

  • a = 11.661 (2) Å

  • b = 9.5220 (19) Å

  • c = 10.989 (2) Å

  • β = 102.15 (3)°

  • V = 1192.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2681 measured reflections

  • 2547 independent reflections

  • 1972 reflections with I > 2σ(I)

  • Rint = 0.009

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.123

  • S = 1.02

  • 2547 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.82 (2) 2.78 (2) 3.5520 (19) 156.1 (18)
C1—H1B⋯S1 0.97 2.54 3.073 (2) 114
C5—H5A⋯N2 0.92 (2) 2.44 (2) 2.800 (2) 103.8 (14)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thioamide have received considerable attention in the literature. They are attractive from several points of view in application (Toshiaki et al., 2003). As part of our search for new thioamide compounds we synthesized the title compound (I), and describe its structure here.

The C6—S1 bond length of 1.7056 (17)Å is comparable with C—S bond [1.688 (2) Å] reported (Cowley et al., 2002). The distance of N1—C6 [1.349 (2) Å] is similar to the distance of reported [1.349 (1) Å] (Casas et al., 2002). The crystal strucure is stabilized by an intermolecular N—H···S hydrogen bond, and weak intramolecular C—H···S and C—H···N hydrogen bonding interactions (Table 1). Fig. 2 shows the intermolecular N—H···S hydrogen bonds between the neighbour molecules in the unit cell.

Related literature top

For related literature, see: Casas et al. (2002); Cowley et al. (2002); Toshiaki et al. (2003).

Experimental top

A mixture of the phenyl isothiocyanate (0.1 mol), and piperidine (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.086 mol, yield 86%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93 - 0.97 Å, and with Uiso=1.2 or 1.5Ueq.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of the intermolecular N—H···S hydrogen bonds between the neighbour molecules in the unit cell.
N-Phenylpiperidine-1-carbothioamide top
Crystal data top
C12H16N2SF(000) = 472
Mr = 220.33Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.661 (2) Åθ = 1.8–27.0°
b = 9.5220 (19) ŵ = 0.24 mm1
c = 10.989 (2) ÅT = 293 K
β = 102.15 (3)°Block, colourless
V = 1192.8 (4) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.009
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 1.8°
Graphite monochromatorh = 1313
ω scansk = 110
2681 measured reflectionsl = 013
2547 independent reflections3 standard reflections every 100 reflections
1972 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0738P)2 + 0.2418P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2547 reflectionsΔρmax = 0.26 e Å3
149 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.129 (8)
Crystal data top
C12H16N2SV = 1192.8 (4) Å3
Mr = 220.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.661 (2) ŵ = 0.24 mm1
b = 9.5220 (19) ÅT = 293 K
c = 10.989 (2) Å0.25 × 0.20 × 0.18 mm
β = 102.15 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.009
2681 measured reflections3 standard reflections every 100 reflections
2547 independent reflections intensity decay: none
1972 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
2547 reflectionsΔρmin = 0.38 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48254 (4)0.19137 (5)0.42566 (4)0.04595 (19)
N10.33547 (12)0.37786 (15)0.29140 (15)0.0441 (4)
N20.53031 (12)0.41101 (18)0.29001 (15)0.0465 (4)
C10.23443 (15)0.2923 (2)0.3048 (2)0.0507 (5)
H1A0.18780.34310.35370.061*
H1B0.26150.20600.34840.061*
C20.15982 (19)0.2580 (2)0.1783 (2)0.0655 (6)
H2B0.09000.20830.18900.079*
H2C0.20340.19660.13410.079*
C30.1237 (2)0.3906 (2)0.1007 (3)0.0701 (7)
H3A0.08370.36420.01730.084*
H3B0.06960.44500.13770.084*
C40.23033 (19)0.4800 (2)0.09364 (19)0.0558 (5)
H4A0.27940.43080.04650.067*
H4B0.20510.56760.05120.067*
C50.29967 (16)0.51043 (19)0.22297 (19)0.0449 (4)
C60.44703 (14)0.33344 (17)0.33069 (15)0.0362 (4)
C70.65404 (14)0.39270 (17)0.32415 (16)0.0388 (4)
C80.71647 (15)0.38347 (18)0.23028 (18)0.0439 (4)
H8A0.67720.38410.14730.053*
C90.83783 (16)0.3733 (2)0.2604 (2)0.0522 (5)
H9A0.87970.36730.19730.063*
C100.89689 (16)0.3721 (2)0.3832 (2)0.0538 (5)
H10A0.97820.36460.40300.065*
C110.83420 (16)0.3822 (2)0.4765 (2)0.0533 (5)
H11A0.87370.38140.55940.064*
C120.71314 (16)0.3935 (2)0.44777 (18)0.0481 (4)
H12A0.67160.40150.51100.058*
H5A0.3633 (19)0.566 (2)0.220 (2)0.055 (6)*
H5B0.2457 (19)0.561 (2)0.267 (2)0.056 (6)*
H20.5075 (17)0.463 (2)0.230 (2)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0424 (3)0.0424 (3)0.0520 (3)0.00420 (18)0.00770 (19)0.01026 (19)
N10.0343 (7)0.0404 (8)0.0576 (9)0.0006 (6)0.0095 (6)0.0122 (7)
N20.0336 (7)0.0551 (9)0.0494 (9)0.0004 (7)0.0058 (6)0.0162 (7)
C10.0344 (9)0.0481 (10)0.0717 (13)0.0002 (7)0.0158 (8)0.0176 (9)
C20.0502 (11)0.0419 (11)0.0962 (17)0.0057 (9)0.0033 (11)0.0036 (11)
C30.0613 (13)0.0556 (13)0.0792 (16)0.0016 (10)0.0179 (11)0.0042 (11)
C40.0655 (12)0.0503 (11)0.0525 (11)0.0128 (9)0.0142 (9)0.0097 (9)
C50.0370 (8)0.0355 (9)0.0631 (12)0.0021 (7)0.0124 (8)0.0092 (8)
C60.0351 (8)0.0369 (8)0.0367 (8)0.0014 (6)0.0078 (6)0.0016 (6)
C70.0335 (8)0.0343 (8)0.0475 (9)0.0029 (6)0.0059 (7)0.0017 (7)
C80.0418 (9)0.0420 (10)0.0474 (10)0.0041 (7)0.0081 (7)0.0007 (7)
C90.0434 (10)0.0475 (11)0.0706 (13)0.0022 (8)0.0233 (9)0.0035 (9)
C100.0320 (9)0.0451 (10)0.0814 (14)0.0008 (7)0.0052 (9)0.0032 (9)
C110.0435 (10)0.0539 (12)0.0556 (11)0.0051 (8)0.0054 (8)0.0008 (9)
C120.0428 (9)0.0536 (11)0.0466 (10)0.0036 (8)0.0066 (8)0.0027 (8)
Geometric parameters (Å, º) top
S1—C61.7056 (17)C4—C51.508 (3)
N1—C61.349 (2)C4—H4A0.9700
N1—C11.465 (2)C4—H4B0.9700
N1—C51.484 (2)C5—H5A0.92 (2)
N2—C61.368 (2)C5—H5B0.99 (2)
N2—C71.423 (2)C7—C81.385 (3)
N2—H20.82 (2)C7—C121.388 (2)
C1—C21.512 (3)C8—C91.387 (3)
C1—H1A0.9700C8—H8A0.9300
C1—H1B0.9700C9—C101.380 (3)
C2—C31.533 (3)C9—H9A0.9300
C2—H2B0.9700C10—C111.383 (3)
C2—H2C0.9700C10—H10A0.9300
C3—C41.522 (3)C11—C121.384 (3)
C3—H3A0.9700C11—H11A0.9300
C3—H3B0.9700C12—H12A0.9300
C6—N1—C1122.35 (14)H4A—C4—H4B108.2
C6—N1—C5125.33 (14)N1—C5—C4110.63 (16)
C1—N1—C5112.18 (14)N1—C5—H5A111.5 (13)
C6—N2—C7126.72 (15)C4—C5—H5A110.9 (13)
C6—N2—H2117.1 (14)N1—C5—H5B107.9 (13)
C7—N2—H2115.0 (14)C4—C5—H5B106.3 (12)
N1—C1—C2110.30 (17)H5A—C5—H5B109.3 (18)
N1—C1—H1A109.6N1—C6—N2115.41 (15)
C2—C1—H1A109.6N1—C6—S1122.54 (12)
N1—C1—H1B109.6N2—C6—S1122.05 (12)
C2—C1—H1B109.6C8—C7—C12119.93 (16)
H1A—C1—H1B108.1C8—C7—N2118.31 (16)
C1—C2—C3111.80 (18)C12—C7—N2121.62 (16)
C1—C2—H2B109.3C7—C8—C9119.78 (18)
C3—C2—H2B109.3C7—C8—H8A120.1
C1—C2—H2C109.3C9—C8—H8A120.1
C3—C2—H2C109.3C10—C9—C8120.50 (19)
H2B—C2—H2C107.9C10—C9—H9A119.7
C4—C3—C2110.95 (18)C8—C9—H9A119.7
C4—C3—H3A109.4C9—C10—C11119.48 (17)
C2—C3—H3A109.4C9—C10—H10A120.3
C4—C3—H3B109.4C11—C10—H10A120.3
C2—C3—H3B109.4C10—C11—C12120.59 (18)
H3A—C3—H3B108.0C10—C11—H11A119.7
C5—C4—C3109.95 (18)C12—C11—H11A119.7
C5—C4—H4A109.7C11—C12—C7119.70 (18)
C3—C4—H4A109.7C11—C12—H12A120.1
C5—C4—H4B109.7C7—C12—H12A120.1
C3—C4—H4B109.7
C6—N1—C1—C2117.8 (2)C7—N2—C6—N1175.49 (17)
C5—N1—C1—C258.1 (2)C7—N2—C6—S13.9 (3)
N1—C1—C2—C354.1 (2)C6—N2—C7—C8129.22 (19)
C1—C2—C3—C452.7 (3)C6—N2—C7—C1255.1 (3)
C2—C3—C4—C553.8 (3)C12—C7—C8—C90.8 (3)
C6—N1—C5—C4115.4 (2)N2—C7—C8—C9176.49 (16)
C1—N1—C5—C460.4 (2)C7—C8—C9—C100.1 (3)
C3—C4—C5—N157.2 (2)C8—C9—C10—C110.5 (3)
C1—N1—C6—N2167.41 (17)C9—C10—C11—C120.0 (3)
C5—N1—C6—N28.0 (3)C10—C11—C12—C70.9 (3)
C1—N1—C6—S113.2 (2)C8—C7—C12—C111.3 (3)
C5—N1—C6—S1171.48 (14)N2—C7—C12—C11176.82 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.82 (2)2.78 (2)3.5520 (19)156.1 (18)
C1—H1B···S10.972.543.073 (2)114
C5—H5A···N20.92 (2)2.44 (2)2.800 (2)103.8 (14)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H16N2S
Mr220.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.661 (2), 9.5220 (19), 10.989 (2)
β (°) 102.15 (3)
V3)1192.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2681, 2547, 1972
Rint0.009
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.123, 1.03
No. of reflections2547
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.38

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.82 (2)2.78 (2)3.5520 (19)156.1 (18)
C1—H1B···S10.972.543.073 (2)114
C5—H5A···N20.92 (2)2.44 (2)2.800 (2)103.8 (14)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

References

First citationCasas, J. S., Castano, M. V. & Castellano, E. E. (2002). Inorg. Chem. 41, 1550–1557.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc. 124, 5270–5271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToshiaki, M., Hideo, A. & Yoshiharu, Y. (2003). J. Org. Chem. 68, 8514–8519.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds