organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2,N2,N4,N4,N6,N6-Hexa­propyl-1,3,5-triazine-2,4,6-tri­amine

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 30 July 2008; accepted 5 August 2008; online 13 August 2008)

The title compound, C21H42N6, was prepared by the reaction of 2,4,6-trichloro-1,3,5-triazine with dipropyl­amine. The structure of the mol­ecule is tripodal.

Related literature

For related literature, see: Frassanito et al. (1996[Frassanito, R., De Socio, G., Laura, D. & Rotilio, D. (1996). J. Agric. Food Chem. 44, 2282-2286.]); Bishop et al. (2002[Bishop, M. M., Lindoy, L. F. & Skelton, B. W. (2002). J. Chem. Soc., Dalton Trans. pp. 377-382.]).

[Scheme 1]

Experimental

Crystal data
  • C21H42N6

  • Mr = 378.61

  • Triclinic, [P \overline 1]

  • a = 9.847 (2) Å

  • b = 12.044 (2) Å

  • c = 12.910 (3) Å

  • α = 116.57 (2)°

  • β = 96.94 (4)°

  • γ = 106.81 (3)°

  • V = 1253.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 295 (2) K

  • 0.32 × 0.24 × 0.13 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.981, Tmax = 0.992

  • 5686 measured reflections

  • 5364 independent reflections

  • 1966 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections

  • every 100 reflections

  • intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.179

  • S = 1.00

  • 5364 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: XSCANS (Bruker, 1996[Bruker, (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Triazine have received considerable attention in the literature. They are attractive from several points of view, such as the possibility of analytical application (Frassanito et al., 1996). As part of our search for new triazine compounds, we synthesized the title compound (I), and describe its structure here.

In the title compound (I) (Fig. 1), the non-hydrogen atoms of the triazine ring are almost in the same plane, with a maximum deviation of 0.016 (3) Å for C19. The C20—N2 bond length of 1.361 (3)Å is comparable with C—N bond [1.334 (2) Å] reported (Bishop et al., 2002). In the structure, there is no classical hydrogen bonds.

Related literature top

For related literature, see: Frassanito et al. (1996); Bishop et al. (2002).

Experimental top

A mixture of the 2,4,6-trichloro-1,3,5-triazine (0.1 mol), and dipropylamine (0.4 mol) was stirred in refluxing ethanol (30 mL) for 5 h to afford the title compound (0.084 mol, yield 84%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.96 and 0.97 Å, and with Uiso=1.2–1.5Ueq.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N2,N2,N4,N4,N6,N6-Hexapropyl-1,3,5-triazine-2,4,6-triamine top
Crystal data top
C21H42N6Z = 2
Mr = 378.61F(000) = 420
Triclinic, P1Dx = 1.003 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.847 (2) ÅCell parameters from 5779 reflections
b = 12.044 (2) Åθ = 1.9–26.8°
c = 12.910 (3) ŵ = 0.06 mm1
α = 116.57 (2)°T = 295 K
β = 96.94 (4)°Prism, colourless
γ = 106.81 (3)°0.32 × 0.24 × 0.13 mm
V = 1253.7 (7) Å3
Data collection top
Bruker P4
diffractometer
1966 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.019
Graphite monochromatorθmax = 27.0°, θmin = 1.8°
ω scansh = 011
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
k = 1414
Tmin = 0.981, Tmax = 0.992l = 1515
5686 measured reflections3 standard reflections every 100 reflections
5364 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.179 1/[σ2(Fo2) + 0.5P + (0.04P)2 + sinθ/λ],
where P = 0.5Fo2 + 0.5Fc2
S = 1.00(Δ/σ)max < 0.001
5364 reflectionsΔρmax = 0.32 e Å3
245 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.061 (3)
Crystal data top
C21H42N6γ = 106.81 (3)°
Mr = 378.61V = 1253.7 (7) Å3
Triclinic, P1Z = 2
a = 9.847 (2) ÅMo Kα radiation
b = 12.044 (2) ŵ = 0.06 mm1
c = 12.910 (3) ÅT = 295 K
α = 116.57 (2)°0.32 × 0.24 × 0.13 mm
β = 96.94 (4)°
Data collection top
Bruker P4
diffractometer
1966 reflections with I > 2σ(I)
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Rint = 0.019
Tmin = 0.981, Tmax = 0.9923 standard reflections every 100 reflections
5686 measured reflections intensity decay: none
5364 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
5364 reflectionsΔρmin = 0.17 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4912 (3)0.6819 (2)0.6032 (2)0.0771 (7)
N20.0405 (3)0.3446 (2)0.5011 (2)0.0786 (7)
N30.1842 (3)0.4375 (3)0.2129 (2)0.0921 (8)
N40.3388 (3)0.5651 (2)0.4067 (2)0.0706 (7)
N50.2667 (3)0.5137 (2)0.55636 (19)0.0705 (6)
N60.1080 (3)0.3826 (2)0.3515 (2)0.0713 (7)
C10.5019 (5)0.8038 (5)0.9325 (3)0.1492 (17)
H1A0.46150.86240.98560.224*
H1B0.60760.83980.96640.224*
H1C0.45950.71620.92310.224*
C20.4656 (4)0.7929 (4)0.8097 (3)0.1069 (11)
H2A0.35890.75750.77570.128*
H2B0.50690.88170.81920.128*
C30.5281 (3)0.7023 (3)0.7252 (3)0.0900 (10)
H3A0.63520.74040.75840.108*
H3B0.49090.61560.72010.108*
C40.6951 (4)0.9729 (4)0.5583 (4)0.1302 (14)
H4A0.67741.05200.57240.195*
H4B0.68830.92060.47450.195*
H4C0.79230.99870.60750.195*
C50.5798 (4)0.8894 (3)0.5909 (3)0.1069 (11)
H5A0.58560.94350.67520.128*
H5B0.48170.86500.54200.128*
C60.6005 (3)0.7640 (3)0.5718 (3)0.0853 (9)
H6A0.59460.71020.48740.102*
H6B0.69900.78880.62020.102*
C70.1670 (5)0.3639 (5)0.8037 (3)0.1554 (18)
H7A0.22220.32080.82720.233*
H7B0.07170.34070.81720.233*
H7C0.22010.45980.85100.233*
C80.1462 (5)0.3165 (4)0.6678 (3)0.1200 (13)
H8A0.24260.33800.65380.144*
H8B0.09320.21960.62000.144*
C90.0622 (4)0.3824 (3)0.6288 (3)0.0927 (10)
H9A0.03410.35940.64260.111*
H9B0.11460.47920.67900.111*
C100.2179 (5)0.0011 (4)0.2490 (4)0.1599 (18)
H10A0.20360.08410.20940.240*
H10B0.24020.02540.19120.240*
H10C0.29870.01330.28300.240*
C110.0829 (4)0.1031 (4)0.3453 (3)0.1207 (13)
H11A0.00130.11390.31070.145*
H11B0.05960.07490.40240.145*
C120.0979 (3)0.2375 (3)0.4121 (3)0.0880 (9)
H12A0.12980.26180.35390.106*
H12B0.17370.22860.45260.106*
C130.1129 (5)0.1115 (4)0.0532 (4)0.1646 (19)
H13A0.11140.02400.10080.247*
H13B0.12990.14730.10450.247*
H13C0.19100.10450.01570.247*
C140.0419 (5)0.2090 (4)0.0485 (4)0.1355 (15)
H14A0.06060.17270.09990.163*
H14B0.12130.21670.01130.163*
C150.0374 (4)0.3384 (4)0.1194 (3)0.1107 (12)
H15A0.03910.33050.15940.133*
H15B0.01220.37140.06660.133*
C160.4074 (6)0.7152 (5)0.1645 (5)0.194 (2)
H16A0.39640.79630.17620.291*
H16B0.40370.66100.08180.291*
H16C0.50100.73760.21690.291*
C170.2822 (5)0.6369 (4)0.1941 (4)0.1364 (15)
H17A0.28530.69160.27750.164*
H17B0.18750.61550.14230.164*
C180.2973 (4)0.5110 (3)0.1757 (3)0.1099 (12)
H18A0.28670.45370.09090.132*
H18B0.39550.53240.22240.132*
C190.3614 (3)0.5835 (3)0.5187 (3)0.0672 (7)
C200.1420 (3)0.4161 (3)0.4683 (3)0.0672 (7)
C210.2109 (4)0.4625 (3)0.3276 (2)0.0689 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0721 (17)0.0766 (16)0.0648 (16)0.0163 (14)0.0150 (14)0.0306 (13)
N20.0749 (17)0.0800 (17)0.0733 (16)0.0149 (14)0.0245 (14)0.0413 (14)
N30.096 (2)0.0876 (18)0.0616 (16)0.0011 (16)0.0113 (15)0.0375 (14)
N40.0734 (17)0.0688 (15)0.0576 (14)0.0195 (14)0.0176 (13)0.0279 (12)
N50.0706 (16)0.0686 (15)0.0648 (15)0.0181 (13)0.0186 (14)0.0336 (13)
N60.0726 (17)0.0701 (15)0.0659 (16)0.0193 (13)0.0201 (12)0.0353 (13)
C10.172 (4)0.183 (4)0.082 (3)0.065 (4)0.041 (3)0.060 (3)
C20.108 (3)0.110 (3)0.089 (2)0.042 (2)0.026 (2)0.041 (2)
C30.074 (2)0.089 (2)0.082 (2)0.0237 (18)0.0119 (17)0.0308 (18)
C40.128 (3)0.117 (3)0.176 (4)0.043 (3)0.064 (3)0.096 (3)
C50.110 (3)0.100 (3)0.127 (3)0.045 (2)0.047 (2)0.065 (2)
C60.064 (2)0.085 (2)0.092 (2)0.0170 (17)0.0177 (17)0.0406 (18)
C70.208 (5)0.207 (5)0.107 (3)0.106 (4)0.065 (3)0.104 (3)
C80.142 (4)0.133 (3)0.119 (3)0.072 (3)0.055 (3)0.075 (3)
C90.090 (2)0.103 (2)0.107 (3)0.039 (2)0.046 (2)0.066 (2)
C100.134 (4)0.112 (3)0.163 (4)0.019 (3)0.011 (3)0.039 (3)
C110.099 (3)0.094 (3)0.127 (3)0.010 (2)0.003 (2)0.046 (2)
C120.074 (2)0.084 (2)0.098 (2)0.0205 (18)0.0306 (19)0.045 (2)
C130.134 (4)0.126 (3)0.122 (3)0.009 (3)0.016 (3)0.013 (3)
C140.142 (4)0.134 (4)0.134 (3)0.065 (3)0.048 (3)0.061 (3)
C150.143 (4)0.098 (3)0.091 (3)0.041 (3)0.043 (3)0.049 (2)
C160.199 (5)0.192 (5)0.210 (5)0.022 (4)0.079 (5)0.145 (5)
C170.135 (4)0.155 (4)0.142 (4)0.049 (3)0.046 (3)0.096 (3)
C180.144 (3)0.092 (3)0.075 (2)0.026 (2)0.019 (2)0.043 (2)
C190.071 (2)0.0604 (17)0.0604 (18)0.0230 (16)0.0166 (16)0.0252 (15)
C200.072 (2)0.0647 (18)0.069 (2)0.0267 (16)0.0256 (17)0.0355 (16)
C210.080 (2)0.0698 (18)0.0536 (17)0.0290 (17)0.0182 (16)0.0295 (15)
Geometric parameters (Å, º) top
N1—C191.363 (3)C7—H7B0.9600
N1—C31.462 (3)C7—H7C0.9600
N1—C61.466 (3)C8—C91.485 (4)
N2—C201.361 (3)C8—H8A0.9700
N2—C121.456 (4)C8—H8B0.9700
N2—C91.469 (4)C9—H9A0.9700
N3—C211.346 (3)C9—H9B0.9700
N3—C181.481 (4)C10—C111.458 (5)
N3—C151.505 (4)C10—H10A0.9600
N4—C191.339 (3)C10—H10B0.9600
N4—C211.348 (3)C10—H10C0.9600
N5—C201.347 (3)C11—C121.518 (4)
N5—C191.355 (3)C11—H11A0.9700
N6—C211.350 (3)C11—H11B0.9700
N6—C201.343 (3)C12—H12A0.9700
C1—C21.520 (4)C12—H12B0.9700
C1—H1A0.9600C13—C141.590 (5)
C1—H1B0.9600C13—H13A0.9600
C1—H1C0.9600C13—H13B0.9600
C2—C31.499 (4)C13—H13C0.9600
C2—H2A0.9700C14—C151.429 (5)
C2—H2B0.9700C14—H14A0.9700
C3—H3A0.9700C14—H14B0.9700
C3—H3B0.9700C15—H15A0.9700
C4—C51.520 (4)C15—H15B0.9700
C4—H4A0.9600C16—C171.522 (5)
C4—H4B0.9600C16—H16A0.9600
C4—H4C0.9600C16—H16B0.9600
C5—C61.496 (4)C16—H16C0.9600
C5—H5A0.9700C17—C181.482 (5)
C5—H5B0.9700C17—H17A0.9700
C6—H6A0.9700C17—H17B0.9700
C6—H6B0.9700C18—H18A0.9700
C7—C81.548 (4)C18—H18B0.9700
C7—H7A0.9600
C19—N1—C3120.5 (3)H9A—C9—H9B107.6
C19—N1—C6120.8 (2)C11—C10—H10A109.5
C3—N1—C6118.5 (2)C11—C10—H10B109.5
C20—N2—C12120.5 (2)H10A—C10—H10B109.5
C20—N2—C9120.5 (3)C11—C10—H10C109.5
C12—N2—C9118.8 (2)H10A—C10—H10C109.5
C21—N3—C18120.8 (3)H10B—C10—H10C109.5
C21—N3—C15121.6 (3)C10—C11—C12112.3 (3)
C18—N3—C15117.5 (3)C10—C11—H11A109.2
C19—N4—C21113.6 (2)C12—C11—H11A109.2
C20—N5—C19113.8 (2)C10—C11—H11B109.2
C21—N6—C20113.2 (2)C12—C11—H11B109.2
C2—C1—H1A109.5H11A—C11—H11B107.9
C2—C1—H1B109.5N2—C12—C11112.4 (3)
H1A—C1—H1B109.5N2—C12—H12A109.1
C2—C1—H1C109.5C11—C12—H12A109.1
H1A—C1—H1C109.5N2—C12—H12B109.1
H1B—C1—H1C109.5C11—C12—H12B109.1
C3—C2—C1110.5 (3)H12A—C12—H12B107.8
C3—C2—H2A109.6C14—C13—H13A109.5
C1—C2—H2A109.6C14—C13—H13B109.5
C3—C2—H2B109.6H13A—C13—H13B109.5
C1—C2—H2B109.6C14—C13—H13C109.5
H2A—C2—H2B108.1H13A—C13—H13C109.5
N1—C3—C2113.4 (3)H13B—C13—H13C109.5
N1—C3—H3A108.9C15—C14—C13108.8 (4)
C2—C3—H3A108.9C15—C14—H14A109.9
N1—C3—H3B108.9C13—C14—H14A109.9
C2—C3—H3B108.9C15—C14—H14B109.9
H3A—C3—H3B107.7C13—C14—H14B109.9
C5—C4—H4A109.5H14A—C14—H14B108.3
C5—C4—H4B109.5C14—C15—N3111.3 (3)
H4A—C4—H4B109.5C14—C15—H15A109.4
C5—C4—H4C109.5N3—C15—H15A109.4
H4A—C4—H4C109.5C14—C15—H15B109.4
H4B—C4—H4C109.5N3—C15—H15B109.4
C6—C5—C4112.6 (3)H15A—C15—H15B108.0
C6—C5—H5A109.1C17—C16—H16A109.5
C4—C5—H5A109.1C17—C16—H16B109.5
C6—C5—H5B109.1H16A—C16—H16B109.5
C4—C5—H5B109.1C17—C16—H16C109.5
H5A—C5—H5B107.8H16A—C16—H16C109.5
N1—C6—C5113.8 (3)H16B—C16—H16C109.5
N1—C6—H6A108.8C18—C17—C16110.0 (4)
C5—C6—H6A108.8C18—C17—H17A109.7
N1—C6—H6B108.8C16—C17—H17A109.7
C5—C6—H6B108.8C18—C17—H17B109.7
H6A—C6—H6B107.7C16—C17—H17B109.7
C8—C7—H7A109.5H17A—C17—H17B108.2
C8—C7—H7B109.5N3—C18—C17111.5 (3)
H7A—C7—H7B109.5N3—C18—H18A109.3
C8—C7—H7C109.5C17—C18—H18A109.3
H7A—C7—H7C109.5N3—C18—H18B109.3
H7B—C7—H7C109.5C17—C18—H18B109.3
C9—C8—C7110.8 (3)H18A—C18—H18B108.0
C9—C8—H8A109.5N4—C19—N5126.1 (3)
C7—C8—H8A109.5N4—C19—N1117.3 (3)
C9—C8—H8B109.5N5—C19—N1116.6 (3)
C7—C8—H8B109.5N5—C20—N6126.5 (3)
H8A—C8—H8B108.1N5—C20—N2116.6 (3)
N2—C9—C8114.1 (3)N6—C20—N2116.9 (3)
N2—C9—H9A108.7N6—C21—N3117.1 (3)
C8—C9—H9A108.7N6—C21—N4126.8 (3)
N2—C9—H9B108.7N3—C21—N4116.1 (3)
C8—C9—H9B108.7

Experimental details

Crystal data
Chemical formulaC21H42N6
Mr378.61
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.847 (2), 12.044 (2), 12.910 (3)
α, β, γ (°)116.57 (2), 96.94 (4), 106.81 (3)
V3)1253.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.32 × 0.24 × 0.13
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.981, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5686, 5364, 1966
Rint0.019
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.179, 1.00
No. of reflections5364
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.17

Computer programs: XSCANS (Bruker, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

References

First citationBishop, M. M., Lindoy, L. F. & Skelton, B. W. (2002). J. Chem. Soc., Dalton Trans. pp. 377–382.  Google Scholar
First citationBruker, (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrassanito, R., De Socio, G., Laura, D. & Rotilio, D. (1996). J. Agric. Food Chem. 44, 2282–2286.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds