organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1741-o1742

2-(7,8-Di­phenyl-1H-imidazo[4,5-f]quinoxalin-2-yl)phenol methanol disolvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bChemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: hkfun@usm.my

(Received 4 August 2008; accepted 5 August 2008; online 13 August 2008)

The title compound, C27H18N4O·2CH4O, is a unsymmetrically substituted quinoxaline. An intra­molecular O—H⋯N hydrogen bond involving the hydr­oxy and imino groups generates an S(6) ring motif. Inter­molecular C—H⋯O and N—H⋯O hydrogen bonds form an R21(7) ring motif involving a methanol O atom and two H atoms of the imidazole and benzene rings, respectively. The latter links neighbouring mol­ecules into one-dimensional extended chains along the a axis. The two benzene rings are inclined towards each other, as indicated by the dihedral angle of 52.13 (10)°. The phenol ring is almost coplanar with the basic quinoxaline unit, making a dihedral angle of 2.43 (6)°. The short distances between the centroids of the five- and six-membered rings prove the existence of ππ inter­actions [centroid–centroid distances = 3.5234 (9)–3.7885 (10) Å]. The crystal structure is stabilized by intra­molecular O—H⋯N, inter­molecular O—H⋯O, N—H⋯O and C—H⋯O (× 2) hydrogen bonds and weak inter­molecular C—H⋯π and ππ inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For information about imidazolyl quinoxaline, see, for example: Mamedov et al. (2004[Mamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Chernova, A. V., Litvinov, I. A., Levin, Ya. A. & Shagidullin, R. R. (2004). Izv. Akad. Nauk SSSR Ser. Khim. 159-164.]); Miranda et al. (2008[Miranda, F. da Silva, Signori, A. M., Vicente, J., de Souza, B., Priebe, J. P., Szpoganicz, B., Sanches, N. G. & Neves, A. (2008). Tetrahedron, 64, 5410-5415.]); Bhosale et al. (2005[Bhosale, R. S., Sarda, S. R., Ardhapure, S. S., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2005). Tetrahedron Lett. 46, 7183-7186.]); Kanoktanaporn et al. (1980[Kanoktanaporn, S., MacBride, J. A. H. & King, T. J. (1980). J. Chem. Res. 406, 4901-4902.]); Ali et al. (2000[Ali, M. M., Ismail, M. M. F., EI-Gabby, M. S. A., Zahran, M. A. & Ammar, T. A. (2000). Molecules, 5, 864-868.]); Veroni et al. (2008[Veroni, I., Mitsopoulou, C. A. & Lahoz, F. J. (2008). J. Organomet. Chem. 693, 2451-2457.]); Zarranz et al. (2004[Zarranz, B., Jaso, A., Aldana, I. & Monge, A. (2004). Bioorg. Med. Chem. 12, 3711-3716.]); Addess et al. (1993[Addess, K. J., Sinsheimer, J. S. & Feigon, J. (1993). Biochemistry, 32, 2498-2505.]); Mollegaard et al. (2000[Mollegaard, N. E., Bailly, C., Waring, M. J. & Nielsen, P. E. (2000). Biochemistry, 39, 9502-9507.]).

[Scheme 1]

Experimental

Crystal data
  • C27H18N4O·2CH4O

  • Mr = 478.54

  • Triclinic, [P \overline 1]

  • a = 10.5120 (3) Å

  • b = 11.4574 (2) Å

  • c = 11.9983 (2) Å

  • α = 116.325 (1)°

  • β = 107.465 (1)°

  • γ = 95.147 (1)°

  • V = 1192.81 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.39 × 0.29 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 0.990

  • 23412 measured reflections

  • 7076 independent reflections

  • 5031 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.182

  • S = 1.07

  • 7076 reflections

  • 335 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected centroid⋯centroid distances (Å)

Cg1⋯Cg1i 3.7885 (10)
Cg2⋯Cg3i 3.5234 (7)
Cg3⋯Cg4i 3.6348 (11)
Symmetry code: (i) -x+1, -y, -z+1. Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/N4/C7/C8/C15, N2/N3/C11–C14, C1–C6 and C8–C15 benzene rings, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O3 1.00 1.71 2.700 (3) 167
O3—H1O3⋯N3iii 0.95 1.87 2.814 (2) 172
N4—H1N4⋯O2 0.97 (3) 1.78 (3) 2.750 (2) 177 (2)
O1—H1O1⋯N1 0.97 (4) 1.66 (4) 2.570 (2) 154 (3)
C2—H2A⋯O1iv 0.93 2.48 3.356 (3) 156
C5—H5A⋯O2 0.93 2.42 3.310 (3) 160
C28—H28CCg5v 0.96 2.95 3.534 (2) 120
Symmetry codes: (iii) x+1, y, z; (iv) -x+1, -y-1, -z+1; (v) -x+1, -y, -z. Cg5 is the centroid of the C22–C27 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Quinoxaline structure is recognized in a growing number of naturally occurring compounds such as riboflavin (vitamin B2), flavoenzymes, molybdopterines and antibiotics of Streptomyces (Ali et al., 2000; Veroni et al., 2008). Quinoxaline derivatives have already been used as antibacterial, antiviral, anticancer, antifungal, antihelmintic and insecticidal agents (Zarranz et al., 2004). The widely prescribed quinoxaline antibiotics are found to bind specifically by bisintercalation to double-stranded DNA (Addess et al., 1993) and to enhance peptide nucleic acid (PNA) binding to it (Mollegaard et al., 2000), stimulating the research on the DNA-interactive ligands. In addition, some disubstituted quinoxaline derivatives have been found as potent antagonists of the quisqualate and kainate receptors on neurones of the central nervous system. To the best of our knowledge, this compound is the first quinoxaline with both phenol and imidazole substituents. In view of the importance of these organic ligands, the title compound (I) was synthesized and its crystal structure is repoted here.

The bond lenghts and angles are in normal ranges (Allen et al., 1987). An intramolecular O—H···N hydrogen bond involving the hydroxy and the N atom of the imidazole group generate S(6) ring motif (Bernstein et al. 1995). An intermolecular C—H···O and N—H···O hydrogen bonds form an R21(7) ring motif involving an oxygen of the methanol and two H atoms of the imidazole and benzene rings, respectively (Bernstein et al. 1995). The latter links neighbouring molecules into 1-D extended chains (Fig. 2) along the a axis. The two benzene rings are inclined to each other and their orientations are shown by the dihedral angle of 52.13 (10) °. The phenol ring is almost coplanar with the basic quinoxaline unit making the dihedral angle of 2.43 (6) °. The short distances between the centroids of the five and six-membered rings prove an existence of π-π interactions (Table 1) [centroid–centroid distances ranging from 3.5234 (9) to 3.7885 (10) Å]. The crystal structure is stabilized by intramolecular O—H···N, intermolecular O—H···O, N—H···O, C—H···O (x 2) hydrogen bonds, weak intermolecular C—H···π and π-π interactions.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For information about imidazolyl quinoxaline, see, for example: Mamedov et al. (2004); Miranda et al. (2008); Bhosale et al. (2005); Kanoktanaporn et al. (1980); Ali et al. (2000); Veroni et al. (2008); Zarranz et al. (2004); Addess et al. (1993); Mollegaard et al. (2000). Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/N4/C7/C8/C15, N2/N3/C11–C14, C1–C6 and C8–C15 benzene rings, respectively. Cg5 is the centroid of the C22–C27 benzene ring.

Experimental top

A mixture of (E)-2-((5-amino-2,3-diphenylquinoxalin-6-ylimino)methyl) -phenol (418 mg, 1 mmol) in 20 ml of dichloromethane was added to a 20 ml methanolic solution of CoCl2. 6H2O (238 mg, 1 mmol). The reaction mixture was stirred under heating/boiling condition for 1 h. After cooling, the brown crystalline products was filtered, washed with ethanol and ether and then dried at room temperature.

Refinement top

The H-atoms attached to O1 and N4 were located from the difference Fourier map and refined freely. The H-atoms attached to O2 and O3 were located from the difference Fourier map and then costrained to ride on the parent atoms with an isotropic displacement parameter 1.5 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93 - 0.96 Å] and refined using a riding model. A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular and intermolecular interactions are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b-axis, showing an 1-D extended chain along the a-axis. Intramolecular and intermolecular interactions are drawn as dashed lines.
2-(7,8-Diphenyl-1H-imidazo[4,5-f]quinoxalin-2-yl)phenol methanol disolvate top
Crystal data top
C27H18N4O·2CH4OV = 1192.81 (4) Å3
Mr = 478.54Z = 2
Triclinic, P1F(000) = 504
Hall symbol: -P 1Dx = 1.332 Mg m3
a = 10.5120 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4574 (2) ÅCell parameters from 4368 reflections
c = 11.9983 (2) ŵ = 0.09 mm1
α = 116.325 (1)°T = 100 K
β = 107.465 (1)°Block, brown
γ = 95.147 (1)°0.39 × 0.29 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7076 independent reflections
Radiation source: fine-focus sealed tube5031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 30.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.876, Tmax = 0.990k = 1616
23412 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0919P)2 + 0.4066P]
where P = (Fo2 + 2Fc2)/3
7076 reflections(Δ/σ)max < 0.001
335 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C27H18N4O·2CH4Oγ = 95.147 (1)°
Mr = 478.54V = 1192.81 (4) Å3
Triclinic, P1Z = 2
a = 10.5120 (3) ÅMo Kα radiation
b = 11.4574 (2) ŵ = 0.09 mm1
c = 11.9983 (2) ÅT = 100 K
α = 116.325 (1)°0.39 × 0.29 × 0.12 mm
β = 107.465 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7076 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5031 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.990Rint = 0.043
23412 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.99 e Å3
7076 reflectionsΔρmin = 0.48 e Å3
335 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43178 (14)0.35511 (14)0.48044 (14)0.0269 (3)
N10.31793 (14)0.20440 (14)0.39691 (14)0.0206 (3)
N20.29306 (14)0.09233 (14)0.22570 (14)0.0190 (3)
N30.03863 (14)0.11984 (14)0.25061 (14)0.0201 (3)
N40.42131 (14)0.09206 (14)0.32161 (14)0.0194 (3)
C10.53792 (17)0.32830 (17)0.44611 (16)0.0204 (3)
C20.64738 (18)0.38570 (17)0.47042 (17)0.0230 (3)
H2A0.64620.43980.50960.028*
C30.75724 (18)0.36215 (18)0.43628 (18)0.0247 (4)
H3A0.83030.40010.45330.030*
C40.76027 (18)0.28222 (19)0.37661 (18)0.0243 (4)
H4A0.83410.26820.35250.029*
C50.65261 (17)0.22384 (18)0.35341 (17)0.0220 (3)
H5A0.65500.16990.31430.026*
C60.54036 (16)0.24495 (16)0.38802 (16)0.0191 (3)
C70.42786 (17)0.18162 (16)0.36860 (16)0.0189 (3)
C80.23639 (17)0.12638 (16)0.36740 (16)0.0197 (3)
C90.10836 (17)0.11210 (17)0.37990 (18)0.0223 (3)
H9A0.06840.15770.41370.027*
C100.04485 (18)0.02999 (17)0.34120 (18)0.0222 (3)
H10A0.03930.01930.34900.027*
C110.10607 (16)0.03970 (16)0.28893 (16)0.0190 (3)
C120.09500 (16)0.18353 (16)0.20112 (16)0.0186 (3)
C130.22417 (16)0.16765 (16)0.18646 (16)0.0182 (3)
C140.23573 (16)0.02835 (16)0.27780 (16)0.0184 (3)
C150.29957 (17)0.05638 (16)0.31951 (16)0.0192 (3)
C160.01785 (17)0.27117 (17)0.16282 (17)0.0204 (3)
C170.12304 (18)0.21913 (19)0.08189 (18)0.0256 (4)
H17A0.16720.13120.05380.031*
C180.1971 (2)0.2984 (2)0.0433 (2)0.0334 (4)
H18A0.29050.26300.01160.040*
C190.1323 (2)0.4301 (2)0.0864 (2)0.0383 (5)
H19A0.18190.48280.06000.046*
C200.0072 (2)0.4835 (2)0.1693 (2)0.0343 (4)
H20A0.05020.57240.19960.041*
C210.0823 (2)0.40404 (18)0.20673 (19)0.0265 (4)
H21A0.17580.43960.26120.032*
C220.28550 (17)0.23115 (16)0.12362 (16)0.0192 (3)
C230.20742 (18)0.21654 (18)0.00052 (17)0.0228 (3)
H23A0.11480.16900.04370.027*
C240.2674 (2)0.27272 (19)0.05977 (18)0.0259 (4)
H24A0.21510.26130.14340.031*
C250.4040 (2)0.34550 (19)0.00426 (19)0.0281 (4)
H25A0.44360.38340.03580.034*
C260.4826 (2)0.36194 (19)0.12905 (19)0.0278 (4)
H26A0.57450.41170.17290.033*
C270.42355 (18)0.30390 (18)0.18805 (17)0.0229 (3)
H27A0.47650.31370.27070.028*
O20.62482 (16)0.01159 (16)0.26543 (16)0.0394 (4)
H1O20.70560.09330.31880.059*
C280.5765 (2)0.0070 (2)0.1395 (2)0.0398 (5)
H28A0.55780.09150.15190.060*
H28B0.49330.06430.08020.060*
H28C0.64550.00930.10120.060*
O30.86046 (15)0.20926 (15)0.38666 (16)0.0366 (3)
H1O30.92030.18580.33890.055*
C290.8398 (2)0.3352 (2)0.4050 (2)0.0352 (4)
H29A0.87290.39890.49940.053*
H29B0.74300.32600.36420.053*
H29C0.88930.36650.36380.053*
H1N40.492 (3)0.053 (2)0.302 (2)0.038 (6)*
H1O10.370 (3)0.303 (3)0.460 (3)0.054 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0281 (6)0.0313 (7)0.0364 (7)0.0112 (5)0.0177 (6)0.0248 (6)
N10.0209 (7)0.0221 (7)0.0245 (7)0.0066 (5)0.0106 (6)0.0146 (6)
N20.0215 (7)0.0202 (7)0.0182 (6)0.0051 (5)0.0090 (5)0.0111 (5)
N30.0213 (7)0.0201 (7)0.0202 (7)0.0055 (5)0.0087 (5)0.0105 (6)
N40.0202 (6)0.0226 (7)0.0216 (7)0.0074 (5)0.0098 (5)0.0145 (6)
C10.0228 (8)0.0198 (8)0.0193 (7)0.0028 (6)0.0083 (6)0.0105 (6)
C20.0263 (8)0.0219 (8)0.0228 (8)0.0069 (6)0.0071 (7)0.0140 (7)
C30.0231 (8)0.0260 (9)0.0254 (8)0.0082 (7)0.0069 (7)0.0141 (7)
C40.0201 (8)0.0305 (9)0.0256 (8)0.0065 (7)0.0096 (7)0.0161 (7)
C50.0215 (8)0.0260 (8)0.0223 (8)0.0059 (6)0.0089 (6)0.0147 (7)
C60.0198 (7)0.0200 (7)0.0187 (7)0.0044 (6)0.0069 (6)0.0109 (6)
C70.0207 (7)0.0193 (7)0.0180 (7)0.0040 (6)0.0077 (6)0.0104 (6)
C80.0205 (7)0.0198 (8)0.0212 (8)0.0039 (6)0.0087 (6)0.0118 (6)
C90.0226 (8)0.0239 (8)0.0263 (8)0.0053 (6)0.0130 (7)0.0151 (7)
C100.0210 (8)0.0247 (8)0.0260 (8)0.0067 (6)0.0131 (7)0.0139 (7)
C110.0198 (7)0.0194 (7)0.0183 (7)0.0052 (6)0.0079 (6)0.0092 (6)
C120.0199 (7)0.0190 (7)0.0173 (7)0.0057 (6)0.0073 (6)0.0090 (6)
C130.0197 (7)0.0182 (7)0.0166 (7)0.0040 (6)0.0067 (6)0.0087 (6)
C140.0208 (7)0.0192 (7)0.0170 (7)0.0053 (6)0.0083 (6)0.0097 (6)
C150.0201 (7)0.0208 (8)0.0192 (7)0.0058 (6)0.0088 (6)0.0108 (6)
C160.0227 (8)0.0235 (8)0.0204 (8)0.0107 (6)0.0115 (6)0.0122 (7)
C170.0251 (8)0.0276 (9)0.0245 (8)0.0086 (7)0.0089 (7)0.0132 (7)
C180.0288 (9)0.0418 (11)0.0305 (10)0.0166 (8)0.0081 (8)0.0192 (9)
C190.0429 (12)0.0403 (12)0.0442 (12)0.0252 (10)0.0182 (10)0.0275 (10)
C200.0423 (11)0.0266 (9)0.0430 (11)0.0150 (8)0.0196 (9)0.0213 (9)
C210.0288 (9)0.0237 (8)0.0298 (9)0.0095 (7)0.0129 (7)0.0140 (7)
C220.0233 (8)0.0187 (7)0.0203 (8)0.0076 (6)0.0110 (6)0.0113 (6)
C230.0238 (8)0.0249 (8)0.0225 (8)0.0078 (7)0.0094 (7)0.0133 (7)
C240.0334 (9)0.0288 (9)0.0223 (8)0.0096 (7)0.0117 (7)0.0170 (7)
C250.0378 (10)0.0259 (9)0.0283 (9)0.0061 (7)0.0169 (8)0.0172 (8)
C260.0283 (9)0.0262 (9)0.0265 (9)0.0001 (7)0.0114 (7)0.0116 (7)
C270.0248 (8)0.0252 (8)0.0201 (8)0.0053 (7)0.0091 (6)0.0121 (7)
O20.0436 (8)0.0401 (8)0.0442 (9)0.0048 (7)0.0230 (7)0.0259 (7)
C280.0470 (12)0.0376 (11)0.0423 (12)0.0138 (10)0.0216 (10)0.0224 (10)
O30.0404 (8)0.0427 (8)0.0511 (9)0.0215 (7)0.0308 (7)0.0324 (8)
C290.0345 (10)0.0341 (10)0.0416 (11)0.0129 (8)0.0216 (9)0.0172 (9)
Geometric parameters (Å, º) top
O1—C11.355 (2)C16—C211.394 (2)
O1—H1O10.97 (3)C16—C171.399 (2)
N1—C71.334 (2)C17—C181.389 (3)
N1—C81.377 (2)C17—H17A0.9300
N2—C131.326 (2)C18—C191.386 (3)
N2—C141.358 (2)C18—H18A0.9300
N3—C121.324 (2)C19—C201.392 (3)
N3—C111.361 (2)C19—H19A0.9300
N4—C71.370 (2)C20—C211.390 (3)
N4—C151.374 (2)C20—H20A0.9300
N4—H1N40.97 (3)C21—H21A0.9300
C1—C21.395 (2)C22—C271.392 (2)
C1—C61.412 (2)C22—C231.393 (2)
C2—C31.379 (3)C23—C241.385 (2)
C2—H2A0.9300C23—H23A0.9300
C3—C41.394 (2)C24—C251.380 (3)
C3—H3A0.9300C24—H24A0.9300
C4—C51.385 (2)C25—C261.392 (3)
C4—H4A0.9300C25—H25A0.9300
C5—C61.398 (2)C26—C271.391 (2)
C5—H5A0.9300C26—H26A0.9300
C6—C71.455 (2)C27—H27A0.9300
C8—C151.399 (2)O2—C281.416 (3)
C8—C91.414 (2)O2—H1O21.0039
C9—C101.364 (2)C28—H28A0.9600
C9—H9A0.9300C28—H28B0.9600
C10—C111.428 (2)C28—H28C0.9600
C10—H10A0.9300O3—C291.407 (2)
C11—C141.421 (2)O3—H1O30.9522
C12—C131.438 (2)C29—H29A0.9600
C12—C161.486 (2)C29—H29B0.9600
C13—C221.486 (2)C29—H29C0.9600
C14—C151.410 (2)
Cg1···Cg1i3.7885 (10)Cg3···Cg4i3.6348 (11)
Cg2···Cg3i3.5234 (7)
C1—O1—H1O1104.8 (17)C8—C15—C14121.14 (15)
C7—N1—C8105.76 (13)C21—C16—C17119.42 (16)
C13—N2—C14117.55 (14)C21—C16—C12121.54 (15)
C12—N3—C11118.73 (14)C17—C16—C12119.04 (15)
C7—N4—C15106.63 (14)C18—C17—C16120.17 (17)
C7—N4—H1N4127.7 (14)C18—C17—H17A119.9
C15—N4—H1N4125.4 (14)C16—C17—H17A119.9
O1—C1—C2117.77 (15)C19—C18—C17120.15 (19)
O1—C1—C6122.16 (15)C19—C18—H18A119.9
C2—C1—C6120.07 (15)C17—C18—H18A119.9
C3—C2—C1119.88 (16)C18—C19—C20120.00 (18)
C3—C2—H2A120.1C18—C19—H19A120.0
C1—C2—H2A120.1C20—C19—H19A120.0
C2—C3—C4120.86 (16)C21—C20—C19120.10 (19)
C2—C3—H3A119.6C21—C20—H20A119.9
C4—C3—H3A119.6C19—C20—H20A119.9
C5—C4—C3119.55 (16)C20—C21—C16120.13 (18)
C5—C4—H4A120.2C20—C21—H21A119.9
C3—C4—H4A120.2C16—C21—H21A119.9
C4—C5—C6120.87 (16)C27—C22—C23119.41 (15)
C4—C5—H5A119.6C27—C22—C13119.70 (14)
C6—C5—H5A119.6C23—C22—C13120.88 (15)
C5—C6—C1118.74 (15)C24—C23—C22120.17 (16)
C5—C6—C7122.07 (15)C24—C23—H23A119.9
C1—C6—C7119.18 (15)C22—C23—H23A119.9
N1—C7—N4111.95 (14)C25—C24—C23120.52 (16)
N1—C7—C6122.72 (14)C25—C24—H24A119.7
N4—C7—C6125.33 (15)C23—C24—H24A119.7
N1—C8—C15109.29 (14)C24—C25—C26119.76 (16)
N1—C8—C9129.16 (15)C24—C25—H25A120.1
C15—C8—C9121.56 (15)C26—C25—H25A120.1
C10—C9—C8118.49 (15)C27—C26—C25119.98 (17)
C10—C9—H9A120.8C27—C26—H26A120.0
C8—C9—H9A120.8C25—C26—H26A120.0
C9—C10—C11120.76 (15)C26—C27—C22120.16 (16)
C9—C10—H10A119.6C26—C27—H27A119.9
C11—C10—H10A119.6C22—C27—H27A119.9
N3—C11—C14119.68 (14)C28—O2—H1O2101.2
N3—C11—C10118.80 (15)O2—C28—H28A109.5
C14—C11—C10121.51 (15)O2—C28—H28B109.5
N3—C12—C13120.96 (14)H28A—C28—H28B109.5
N3—C12—C16116.40 (14)O2—C28—H28C109.5
C13—C12—C16122.65 (14)H28A—C28—H28C109.5
N2—C13—C12121.33 (14)H28B—C28—H28C109.5
N2—C13—C22116.56 (14)C29—O3—H1O3108.4
C12—C13—C22122.09 (14)O3—C29—H29A109.5
N2—C14—C15121.75 (15)O3—C29—H29B109.5
N2—C14—C11121.71 (15)H29A—C29—H29B109.5
C15—C14—C11116.51 (14)O3—C29—H29C109.5
N4—C15—C8106.38 (14)H29A—C29—H29C109.5
N4—C15—C14132.46 (15)H29B—C29—H29C109.5
O1—C1—C2—C3179.52 (16)N3—C11—C14—N22.1 (2)
C6—C1—C2—C30.7 (3)C10—C11—C14—N2178.68 (15)
C1—C2—C3—C40.5 (3)N3—C11—C14—C15179.95 (14)
C2—C3—C4—C51.1 (3)C10—C11—C14—C150.7 (2)
C3—C4—C5—C60.5 (3)C7—N4—C15—C80.49 (17)
C4—C5—C6—C10.6 (3)C7—N4—C15—C14177.94 (17)
C4—C5—C6—C7178.09 (16)N1—C8—C15—N40.57 (18)
O1—C1—C6—C5179.00 (15)C9—C8—C15—N4179.39 (15)
C2—C1—C6—C51.3 (2)N1—C8—C15—C14178.09 (15)
O1—C1—C6—C72.3 (2)C9—C8—C15—C142.0 (3)
C2—C1—C6—C7177.50 (15)N2—C14—C15—N41.1 (3)
C8—N1—C7—N40.09 (19)C11—C14—C15—N4179.09 (17)
C8—N1—C7—C6179.25 (15)N2—C14—C15—C8177.11 (15)
C15—N4—C7—N10.26 (19)C11—C14—C15—C80.8 (2)
C15—N4—C7—C6179.58 (15)N3—C12—C16—C21129.81 (17)
C5—C6—C7—N1177.68 (16)C13—C12—C16—C2150.0 (2)
C1—C6—C7—N13.6 (2)N3—C12—C16—C1749.6 (2)
C5—C6—C7—N43.1 (3)C13—C12—C16—C17130.63 (17)
C1—C6—C7—N4175.63 (15)C21—C16—C17—C181.4 (3)
C7—N1—C8—C150.41 (18)C12—C16—C17—C18179.21 (17)
C7—N1—C8—C9179.54 (17)C16—C17—C18—C190.9 (3)
N1—C8—C9—C10178.63 (17)C17—C18—C19—C200.4 (3)
C15—C8—C9—C101.4 (3)C18—C19—C20—C211.3 (3)
C8—C9—C10—C110.2 (3)C19—C20—C21—C160.8 (3)
C12—N3—C11—C141.3 (2)C17—C16—C21—C200.6 (3)
C12—N3—C11—C10179.45 (15)C12—C16—C21—C20179.91 (17)
C9—C10—C11—N3179.52 (16)N2—C13—C22—C2750.5 (2)
C9—C10—C11—C141.3 (3)C12—C13—C22—C27131.08 (17)
C11—N3—C12—C130.7 (2)N2—C13—C22—C23128.11 (17)
C11—N3—C12—C16179.14 (14)C12—C13—C22—C2350.3 (2)
C14—N2—C13—C121.3 (2)C27—C22—C23—C240.7 (3)
C14—N2—C13—C22177.07 (14)C13—C22—C23—C24177.91 (16)
N3—C12—C13—N22.1 (2)C22—C23—C24—C251.1 (3)
C16—C12—C13—N2177.70 (15)C23—C24—C25—C260.4 (3)
N3—C12—C13—C22176.20 (15)C24—C25—C26—C270.7 (3)
C16—C12—C13—C224.0 (2)C25—C26—C27—C221.0 (3)
C13—N2—C14—C15178.55 (15)C23—C22—C27—C260.3 (3)
C13—N2—C14—C110.7 (2)C13—C22—C27—C26178.97 (16)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O31.001.712.700 (3)167
O3—H1O3···N3ii0.951.872.814 (2)172
N4—H1N4···O20.97 (3)1.78 (3)2.750 (2)177 (2)
O1—H1O1···N10.97 (4)1.66 (4)2.570 (2)154 (3)
C2—H2A···O1iii0.932.483.356 (3)156
C5—H5A···O20.932.423.310 (3)160
C28—H28C···Cg5iv0.962.953.534 (2)120
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC27H18N4O·2CH4O
Mr478.54
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.5120 (3), 11.4574 (2), 11.9983 (2)
α, β, γ (°)116.325 (1), 107.465 (1), 95.147 (1)
V3)1192.81 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.29 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.876, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
23412, 7076, 5031
Rint0.043
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.182, 1.07
No. of reflections7076
No. of parameters335
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.99, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected interatomic distances (Å) top
Cg1···Cg1i3.7885 (10)Cg3···Cg4i3.6348 (11)
Cg2···Cg3i3.5234 (7)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O31.00001.71002.700 (3)167.00
O3—H1O3···N3ii0.95001.87002.814 (2)172.00
N4—H1N4···O20.97 (3)1.78 (3)2.750 (2)177 (2)
O1—H1O1···N10.97 (4)1.66 (4)2.570 (2)154 (3)
C2—H2A···O1iii0.93002.48003.356 (3)156.00
C5—H5A···O20.93002.42003.310 (3)160.00
C28—H28C···Cg5iv0.96002.95003.534 (2)120.00
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y1, z+1; (iv) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: zsrkk@yahoo.com. First Postdoctoral position: Chemistry Department, University of Bath, Claverton Down, Bath BA2 7AY England.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia, and the University of Bath for a post-doctoral research fellowship.

References

First citationAddess, K. J., Sinsheimer, J. S. & Feigon, J. (1993). Biochemistry, 32, 2498–2505.  CAS PubMed Web of Science Google Scholar
First citationAli, M. M., Ismail, M. M. F., EI-Gabby, M. S. A., Zahran, M. A. & Ammar, T. A. (2000). Molecules, 5, 864–868.  CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhosale, R. S., Sarda, S. R., Ardhapure, S. S., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2005). Tetrahedron Lett. 46, 7183–7186.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKanoktanaporn, S., MacBride, J. A. H. & King, T. J. (1980). J. Chem. Res. 406, 4901–4902.  Google Scholar
First citationMamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Chernova, A. V., Litvinov, I. A., Levin, Ya. A. & Shagidullin, R. R. (2004). Izv. Akad. Nauk SSSR Ser. Khim. 159–164.  Google Scholar
First citationMiranda, F. da Silva, Signori, A. M., Vicente, J., de Souza, B., Priebe, J. P., Szpoganicz, B., Sanches, N. G. & Neves, A. (2008). Tetrahedron, 64, 5410–5415.  Google Scholar
First citationMollegaard, N. E., Bailly, C., Waring, M. J. & Nielsen, P. E. (2000). Biochemistry, 39, 9502–9507.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeroni, I., Mitsopoulou, C. A. & Lahoz, F. J. (2008). J. Organomet. Chem. 693, 2451–2457.  Web of Science CSD CrossRef CAS Google Scholar
First citationZarranz, B., Jaso, A., Aldana, I. & Monge, A. (2004). Bioorg. Med. Chem. 12, 3711–3716.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1741-o1742
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds