organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl­oxypyridin-2-amine

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 15 August 2008; accepted 25 August 2008; online 30 August 2008)

In the title compound, C12H12N2O, the dihedral angle between the planes of the pyridine and phenyl rings plane is 35.94 (12)°. In the crystal structure, centrosymmetrically related mol­ecules are linked by a pair of N—H⋯N hydrogen bonds, forming a dimer with an R22(8) ring motif. In addition, there is an intra­molecular N—H⋯O inter­action.

Related literature

For background, see: Sharma et al. (2004[Sharma, G. V. M., Prasad, T. R. & Sharma, R. B. S. (2004). Synth. Commun. 34, 941-950.]); Evans et al. (2002[Evans, D. A., Rajapakse, H. A. & Stenkamp, D. (2002). Angew. Chem. Int. Ed. 114, 4751-4755.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O

  • Mr = 200.24

  • Orthorhombic, P b c a

  • a = 12.852 (3) Å

  • b = 7.4068 (15) Å

  • c = 22.561 (4) Å

  • V = 2147.6 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.15 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.991

  • 19827 measured reflections

  • 2458 independent reflections

  • 1375 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.157

  • S = 1.07

  • 2458 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N2i 0.86 2.18 3.021 (3) 166
N1—H1C⋯O1 0.86 2.29 2.628 (3) 104
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzyl ethers and their derivatives are used as protecting group (Sharma et al., 2004) for alcohols and phenols in the synthesis of natural products (Evans et al., 2002). Here we report the synthesis and structure of the title compound, namely 3-(benzyloxy)pyridin-2-amine (I).

In the title compound (I) (Fig.1), the dihedral angle between the pyridine ring plane and benzene ring plane is 35.94 (12)°. In the crystal structure, centrosymmetrically related molecules are linked by a pair of N—H···N hydrogen bonds to form a dimer with an R22(8) ring motif (Fig. 2). In addition, there is an intramolecular N—H···O interaction (Table 1).

Related literature top

For background, see: Sharma et al. (2004); Evans et al. (2002).

Experimental top

3-(Benzyloxy)pyridin-2-amine (0.020 g, 0.1 mmol) was added to a solution containing ethanol (8 ml) and ether (4 ml). The mixture was stirred at room temperature for 10 min and then filtered off. After a few days, colourless single crystals were obtained.

Refinement top

All H atoms attached to C and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å, and with Uiso(H) =1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular N—H···O contact is shown as a dashed line.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding of the compound (I), down along the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
3-Benzyloxypyridin-2-amine top
Crystal data top
C12H12N2OF(000) = 848
Mr = 200.24Dx = 1.239 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 21430 reflections
a = 12.852 (3) Åθ = 3.1–27.5°
b = 7.4068 (15) ŵ = 0.08 mm1
c = 22.561 (4) ÅT = 293 K
V = 2147.6 (8) Å3Block, colourless
Z = 80.15 × 0.10 × 0.07 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2458 independent reflections
Radiation source: fine-focus sealed tube1375 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 3.2°
Thin–slice ω scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.982, Tmax = 0.991l = 2929
19827 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.5758P]
where P = (Fo2 + 2Fc2)/3
2458 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C12H12N2OV = 2147.6 (8) Å3
Mr = 200.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.852 (3) ŵ = 0.08 mm1
b = 7.4068 (15) ÅT = 293 K
c = 22.561 (4) Å0.15 × 0.10 × 0.07 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2458 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1375 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.991Rint = 0.084
19827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.07Δρmax = 0.13 e Å3
2458 reflectionsΔρmin = 0.15 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66421 (18)0.4734 (3)0.00746 (11)0.0624 (7)
H1A0.69250.36090.00120.075*
C20.65962 (19)0.5359 (4)0.06581 (11)0.0689 (7)
H2A0.68600.46670.09670.083*
C30.61591 (19)0.6997 (4)0.07666 (11)0.0648 (7)
H3A0.61240.73910.11570.078*
C40.58293 (17)0.7505 (3)0.02173 (10)0.0501 (6)
C50.62616 (17)0.5814 (3)0.03648 (10)0.0502 (6)
C60.65634 (19)0.3704 (3)0.11541 (11)0.0630 (7)
H6A0.72830.34880.10460.076*
H6B0.61350.27850.09690.076*
C70.64405 (17)0.3635 (3)0.18162 (11)0.0546 (6)
C80.5582 (2)0.4375 (3)0.20964 (11)0.0659 (7)
H8A0.50560.48990.18710.079*
C90.5499 (2)0.4343 (4)0.27071 (12)0.0763 (8)
H9A0.49220.48550.28910.092*
C100.6265 (3)0.3558 (4)0.30437 (13)0.0833 (9)
H10A0.62130.35400.34550.100*
C110.7103 (3)0.2807 (4)0.27693 (13)0.0899 (9)
H11A0.76170.22560.29960.108*
C120.7201 (2)0.2850 (3)0.21579 (12)0.0726 (8)
H12A0.77840.23460.19780.087*
N10.54785 (16)0.8603 (3)0.06572 (8)0.0714 (7)
H1B0.52270.96480.05720.086*
H1C0.55080.82530.10200.086*
N20.57740 (15)0.8083 (3)0.03408 (8)0.0577 (5)
O10.62485 (13)0.5449 (2)0.09615 (7)0.0628 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0613 (16)0.0619 (15)0.0641 (17)0.0114 (13)0.0064 (12)0.0070 (13)
C20.0723 (17)0.0770 (18)0.0575 (17)0.0122 (14)0.0023 (13)0.0152 (14)
C30.0654 (16)0.0796 (18)0.0494 (14)0.0048 (14)0.0042 (12)0.0011 (13)
C40.0492 (13)0.0506 (13)0.0506 (13)0.0023 (11)0.0016 (10)0.0002 (11)
C50.0462 (13)0.0560 (14)0.0484 (13)0.0015 (10)0.0037 (10)0.0016 (11)
C60.0676 (17)0.0540 (15)0.0673 (17)0.0115 (12)0.0057 (13)0.0004 (12)
C70.0581 (15)0.0411 (12)0.0645 (15)0.0025 (11)0.0048 (12)0.0068 (11)
C80.0588 (15)0.0680 (16)0.0709 (17)0.0074 (13)0.0004 (13)0.0095 (13)
C90.0757 (19)0.0759 (19)0.077 (2)0.0016 (15)0.0155 (15)0.0037 (15)
C100.105 (2)0.079 (2)0.0653 (18)0.0010 (18)0.0042 (17)0.0146 (16)
C110.105 (3)0.091 (2)0.074 (2)0.0223 (19)0.0172 (18)0.0197 (17)
C120.0774 (19)0.0659 (17)0.0747 (18)0.0221 (14)0.0066 (14)0.0062 (14)
N10.1049 (18)0.0599 (12)0.0493 (11)0.0246 (12)0.0085 (11)0.0024 (10)
N20.0612 (13)0.0633 (12)0.0486 (11)0.0010 (10)0.0049 (9)0.0027 (10)
O10.0838 (12)0.0531 (10)0.0517 (10)0.0124 (8)0.0015 (8)0.0041 (8)
Geometric parameters (Å, º) top
C1—C51.365 (3)C6—H6B0.9700
C1—C21.397 (3)C7—C121.374 (3)
C1—H1A0.9300C7—C81.384 (3)
C2—C31.359 (3)C8—C91.382 (3)
C2—H2A0.9300C8—H8A0.9300
C3—N21.347 (3)C9—C101.373 (4)
C3—H3A0.9300C9—H9A0.9300
C4—N21.332 (3)C10—C111.361 (4)
C4—N11.360 (3)C10—H10A0.9300
C4—C51.410 (3)C11—C121.386 (4)
C5—O11.373 (3)C11—H11A0.9300
C6—O11.422 (3)C12—H12A0.9300
C6—C71.503 (3)N1—H1B0.8600
C6—H6A0.9700N1—H1C0.8600
C5—C1—C2118.4 (2)C12—C7—C6119.8 (2)
C5—C1—H1A120.8C8—C7—C6121.6 (2)
C2—C1—H1A120.8C9—C8—C7120.7 (2)
C3—C2—C1118.9 (2)C9—C8—H8A119.7
C3—C2—H2A120.5C7—C8—H8A119.7
C1—C2—H2A120.5C10—C9—C8120.2 (3)
N2—C3—C2123.8 (2)C10—C9—H9A119.9
N2—C3—H3A118.1C8—C9—H9A119.9
C2—C3—H3A118.1C11—C10—C9119.3 (3)
N2—C4—N1118.7 (2)C11—C10—H10A120.4
N2—C4—C5122.0 (2)C9—C10—H10A120.4
N1—C4—C5119.3 (2)C10—C11—C12121.1 (3)
C1—C5—O1127.0 (2)C10—C11—H11A119.5
C1—C5—C4119.4 (2)C12—C11—H11A119.5
O1—C5—C4113.67 (19)C7—C12—C11120.2 (3)
O1—C6—C7107.75 (18)C7—C12—H12A119.9
O1—C6—H6A110.2C11—C12—H12A119.9
C7—C6—H6A110.2C4—N1—H1B120.0
O1—C6—H6B110.2C4—N1—H1C120.0
C7—C6—H6B110.2H1B—N1—H1C120.0
H6A—C6—H6B108.5C4—N2—C3117.5 (2)
C12—C7—C8118.6 (2)C5—O1—C6118.36 (18)
C5—C1—C2—C31.2 (4)C7—C8—C9—C100.6 (4)
C1—C2—C3—N20.9 (4)C8—C9—C10—C110.3 (4)
C2—C1—C5—O1179.2 (2)C9—C10—C11—C121.1 (5)
C2—C1—C5—C40.6 (3)C8—C7—C12—C110.0 (4)
N2—C4—C5—C10.4 (3)C6—C7—C12—C11178.9 (2)
N1—C4—C5—C1178.1 (2)C10—C11—C12—C71.0 (5)
N2—C4—C5—O1179.8 (2)N1—C4—N2—C3177.8 (2)
N1—C4—C5—O11.7 (3)C5—C4—N2—C30.7 (3)
O1—C6—C7—C12137.2 (2)C2—C3—N2—C40.0 (4)
O1—C6—C7—C841.6 (3)C1—C5—O1—C66.8 (3)
C12—C7—C8—C90.7 (4)C4—C5—O1—C6173.45 (19)
C6—C7—C8—C9178.1 (2)C7—C6—O1—C5177.93 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N2i0.862.183.021 (3)166
N1—H1C···O10.862.292.628 (3)104
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC12H12N2O
Mr200.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.852 (3), 7.4068 (15), 22.561 (4)
V3)2147.6 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.15 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.982, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
19827, 2458, 1375
Rint0.084
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.157, 1.07
No. of reflections2458
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N2i0.862.183.021 (3)166
N1—H1C···O10.862.292.628 (3)104
Symmetry code: (i) x+1, y+2, z.
 

References

First citationEvans, D. A., Rajapakse, H. A. & Stenkamp, D. (2002). Angew. Chem. Int. Ed. 114, 4751–4755.  CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSharma, G. V. M., Prasad, T. R. & Sharma, R. B. S. (2004). Synth. Commun. 34, 941–950.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds