organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4R)-4-[(1R)-1,2-Di­hydroxy­ethyl]-1-[(1R)-1-phenyl­ethyl]pyrrolidin-2-one

aCancer Research Laboratory, The University of Auckland, Private Bag 92019, Auckland, New Zealand, and bDepartment of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: pdw.boyd@auckland.ac.nz

(Received 18 August 2008; accepted 25 August 2008; online 30 August 2008)

The title compound, C14H19NO3, was obtained as one of the two isomers of a Sharpless asymmetric dihydroxy­lation reaction of (1S)-1-[(1R)-1-phenyl­ethyl]-4-vinyl­pyrrolidin-2-one. The absolute stereochemistry of this isomer was determined from the known stereochemistry (R) at the bridge C atom between the phenyl and pyrrolidine rings. The mol­ecules form one-dimensional tapes along the b axis via hydrogen bonding between the carbonyl O atom and the alcohol groups of neighbouring mol­ecules. These assemble into sheets via inter­digitative stacking of the phenyl rings and C—H⋯O inter­actions.

Related literature

For related literature see: Fava et al. (1999[Fava, C., Galeazzi, R., Mobbili, G. & Orena, M. (1999). Heterocycles, 51, 2463-2470.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19NO3

  • Mr = 249.30

  • Monoclinic, P 21

  • a = 6.1953 (1) Å

  • b = 8.2895 (2) Å

  • c = 13.2737 (1) Å

  • β = 103.353 (2)°

  • V = 663.25 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 83 (2) K

  • 0.28 × 0.18 × 0.10 mm

Data collection
  • Siemens SMART APEX CCD diffractometer

  • Absorption correction: none

  • 4016 measured reflections

  • 1461 independent reflections

  • 1271 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.099

  • S = 1.01

  • 1461 reflections

  • 166 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.82 1.96 2.743 (3) 158
O2—H2⋯O1i 0.82 1.93 2.738 (3) 170
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I) was obtained as one of the two isomers of a Sharpless asymmetric dihydroxylation reaction of (1S)-1-((1R)-1-phenylethyl)-4-vinylpyrrolidin-2-one (Fava et al.1999). The major isomer from the reaction was recrystallized to give a pure sample for X-ray analysis. The molecular structure of (I) is shown in Fig. 1. The assignment of the absolute stereochemistry is based on the known stereochemistry of C7 (R). This leads to the absolute configuration at C10 and C13 as R.

The molecules of (I) in the crystal form one dimensional tapes along the b axis via hydrogen bonding between the carbonyl oxygen, O1 and the two alcohol moieties O2—H and O3—H. These assemble by interdigitative stacking of phenyl rings between tapes and further connection by C11—H11B···O3, C5—H5···O2 interactions between adjacent molecules to form sheets near the b-c plane, Fig. 2 (Table 1).

Related literature top

For related literature see: Fava et al. (1999)

Experimental top

(4R)-4-[(1R)-1,2-Dihydroxyethyl]-1-[(1R)-1-phenylethyl]-2-pyrrolidinone (I): AD-mix-β (1.40 g, 1 mmol, Aldrich Cat. No. 392766) was dissolved in tert-butanol (5 ml) and water (5 ml). Methanesulfonamide (98 mg, 1 mmol) was added and cooled to 273 K, (1S)-1-((1R)-1-phenylethyl)-4-vinylpyrrolidin-2-one1 (216 mg, 1 mmol) was added and the reaction stirred for 24 h. Na2SO3 (1.5 g, 11.9 mmol) was added and stirred for another 90 minutes. The reaction was extracted with dichloromethane (4x100 ml), the combined organic layers were washed with 2 N KOH solution, dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by chromatography, eluting with methanol/ethylacetate (3:7) to give the two isomers (4R)-4-[(1R)-1,2-dihydroxyethyl]-1-[(1R)-1-phenylethyl]-2-pyrrolidinone and (4R)-4-[(1S)-1,2-dihydroxyethyl]-1-[(1R)-1-phenylethyl]-2-pyrrolidinone (169 mg, 68%) in a ratio of 2:1. The title compound (I) was then obtained by recrystallization from ethylacetate as clear crystals. 1H NMR (400 MHz, CDCl3) δ 7.36–7.24 (m, 5 H), 5.47 (q, J=7.1 Hz, 1 H), 3.69 (dd, J=10.7, 2.8 Hz, 1 H), 3.67–3.60 (m, 1 H), 3.46 (dd, J=10.7, 7.0 Hz, 1 H), 3.35 (dd, J=10.0, 7.0 Hz, 1 H), 3.13 (dd, J=10.0, 8.0 Hz, 1 H), 2.66 (br s, 1 H), 2.46 (dd, J=15.2, 8.1 Hz, 1 H), 2.40–2.29 (m, 1 H), 2.26 (dd, J=15.2, 8.2 Hz, 1 H), 2.17 (br s, 1 H), 1.53 (t, J=7.1 Hz, 3 H). LCMS (APCI+) calcd for C14H19NO3: 250 (MH+), found 250 (100%).

Refinement top

Hydrogen atoms were placed in calculated positions and refined using the riding model [O—H = 0.82 Å C—H = 0.93–0.97 Å], with Uiso(H) = 1.5 times Ueq(O) and Uiso(H) = 1.2 or 1.5 times Ueq(C)..

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of (I) showing 50% probability displacement ellipsoids for non-hydrogen atoms and hydrogen atoms as arbitary spheres.
[Figure 2] Fig. 2. Illustration of the arrangement of (I) into sheets.
(4R)-4-[(1R)-1,2-Dihydroxyethyl]-1-[(1R)-1- phenylethyl]pyrrolidin-2-one top
Crystal data top
C14H19NO3F(000) = 268
Mr = 249.30Dx = 1.248 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2597 reflections
a = 6.1953 (1) Åθ = 1.6–26.4°
b = 8.2895 (2) ŵ = 0.09 mm1
c = 13.2737 (1) ÅT = 83 K
β = 103.353 (2)°Plate, colourless
V = 663.25 (2) Å30.28 × 0.18 × 0.10 mm
Z = 2
Data collection top
Siemens SMART APEX CCD
diffractometer
1271 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 26.4°, θmin = 1.6°
ω scansh = 77
4016 measured reflectionsk = 1010
1461 independent reflectionsl = 716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0168P)2 + 0.6853P]
where P = (Fo2 + 2Fc2)/3
1461 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C14H19NO3V = 663.25 (2) Å3
Mr = 249.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1953 (1) ŵ = 0.09 mm1
b = 8.2895 (2) ÅT = 83 K
c = 13.2737 (1) Å0.28 × 0.18 × 0.10 mm
β = 103.353 (2)°
Data collection top
Siemens SMART APEX CCD
diffractometer
1271 reflections with I > 2σ(I)
4016 measured reflectionsRint = 0.040
1461 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.099H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
1461 reflectionsΔρmin = 0.22 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.1980 (4)0.0064 (3)0.00048 (16)0.0261 (5)
H30.20590.07360.03480.039*
O10.3278 (5)0.7778 (3)0.12286 (19)0.0277 (6)
O20.3068 (5)0.0804 (3)0.20720 (19)0.0339 (6)
H20.32890.01080.18320.051*
N10.4081 (4)0.5848 (3)0.2318 (2)0.0200 (6)
C110.2531 (5)0.4926 (4)0.0993 (2)0.0204 (6)
H11A0.35540.46850.03390.024*
H11B0.10700.51200.08690.024*
C70.5155 (5)0.6928 (4)0.2932 (2)0.0216 (7)
H70.47480.80310.27840.026*
C130.3005 (6)0.1917 (4)0.1258 (3)0.0231 (7)
H130.44730.19640.07840.028*
C90.4141 (6)0.4083 (4)0.2397 (3)0.0231 (7)
H9A0.36820.37310.31120.028*
H9B0.56130.36660.20990.028*
C120.3308 (5)0.6349 (4)0.1506 (2)0.0216 (7)
C10.4215 (5)0.6645 (4)0.4075 (2)0.0222 (7)
C80.7661 (5)0.6810 (5)0.2569 (3)0.0320 (8)
H8A0.81370.57540.27210.048*
H8B0.83410.76050.29220.048*
H8C0.80890.69980.18370.048*
C100.2466 (6)0.3545 (4)0.1767 (3)0.0217 (7)
H100.09830.34990.22280.026*
C60.5480 (6)0.6089 (4)0.4737 (2)0.0297 (8)
H60.69680.58420.44740.036*
C140.1299 (6)0.1421 (4)0.0656 (2)0.0236 (7)
H14A0.00840.11620.11420.028*
H14B0.10240.23260.02400.028*
C40.2361 (7)0.6207 (6)0.6180 (3)0.0433 (10)
H40.17430.60560.68820.052*
C20.2008 (6)0.6969 (6)0.4493 (3)0.0395 (10)
H2A0.11290.73470.40630.047*
C50.4561 (7)0.5893 (5)0.5789 (3)0.0370 (9)
H50.54440.55480.62270.044*
C30.1060 (7)0.6746 (7)0.5538 (3)0.0491 (12)
H3A0.04380.69590.58010.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0388 (14)0.0189 (12)0.0245 (11)0.0048 (12)0.0151 (10)0.0050 (11)
O10.0460 (16)0.0153 (12)0.0264 (13)0.0007 (11)0.0178 (12)0.0004 (10)
O20.0633 (18)0.0161 (12)0.0291 (13)0.0033 (14)0.0247 (13)0.0008 (10)
N10.0294 (15)0.0130 (13)0.0208 (13)0.0012 (12)0.0121 (11)0.0019 (11)
C110.0293 (16)0.0170 (15)0.0176 (14)0.0016 (15)0.0111 (12)0.0007 (14)
C70.0299 (17)0.0168 (17)0.0202 (15)0.0016 (15)0.0103 (13)0.0010 (13)
C130.0341 (18)0.0166 (16)0.0219 (16)0.0032 (15)0.0135 (14)0.0008 (14)
C90.035 (2)0.0168 (16)0.0211 (16)0.0030 (15)0.0134 (14)0.0025 (14)
C120.0269 (17)0.0193 (16)0.0196 (15)0.0028 (14)0.0071 (13)0.0005 (14)
C10.0292 (17)0.0180 (17)0.0203 (15)0.0016 (14)0.0073 (13)0.0056 (14)
C80.0330 (19)0.038 (2)0.0248 (17)0.0042 (18)0.0050 (14)0.0050 (16)
C100.0309 (19)0.0178 (16)0.0191 (16)0.0010 (15)0.0112 (14)0.0004 (13)
C60.041 (2)0.0249 (19)0.0255 (17)0.0037 (17)0.0125 (15)0.0010 (16)
C140.0327 (18)0.0182 (16)0.0225 (15)0.0025 (14)0.0116 (13)0.0022 (14)
C40.059 (3)0.044 (3)0.0239 (17)0.014 (2)0.0029 (17)0.0049 (18)
C20.034 (2)0.060 (3)0.0269 (18)0.003 (2)0.0112 (15)0.011 (2)
C50.063 (3)0.0251 (19)0.0269 (18)0.001 (2)0.0178 (18)0.0022 (16)
C30.035 (2)0.075 (4)0.034 (2)0.002 (2)0.0001 (17)0.017 (2)
Geometric parameters (Å, º) top
O3—C141.429 (4)C9—H9A0.9700
O3—H30.8200C9—H9B0.9700
O1—C121.242 (4)C1—C21.378 (5)
O2—C131.428 (4)C1—C61.385 (4)
O2—H20.8200C8—H8A0.9600
N1—C121.342 (4)C8—H8B0.9600
N1—C91.468 (4)C8—H8C0.9600
N1—C71.469 (4)C10—H100.9800
C11—C121.496 (5)C6—C51.390 (5)
C11—C101.532 (4)C6—H60.9300
C11—H11A0.9700C14—H14A0.9700
C11—H11B0.9700C14—H14B0.9700
C7—C11.513 (4)C4—C51.367 (6)
C7—C81.519 (5)C4—C31.376 (6)
C7—H70.9800C4—H40.9300
C13—C101.511 (5)C2—C31.388 (5)
C13—C141.521 (4)C2—H2A0.9300
C13—H130.9800C5—H50.9300
C9—C101.542 (5)C3—H3A0.9300
C14—O3—H3109.5C6—C1—C7123.0 (3)
C13—O2—H2109.5C7—C8—H8A109.5
C12—N1—C9112.7 (3)C7—C8—H8B109.5
C12—N1—C7123.2 (3)H8A—C8—H8B109.5
C9—N1—C7123.1 (3)C7—C8—H8C109.5
C12—C11—C10104.2 (2)H8A—C8—H8C109.5
C12—C11—H11A110.9H8B—C8—H8C109.5
C10—C11—H11A110.9C13—C10—C11113.5 (3)
C12—C11—H11B110.9C13—C10—C9113.2 (3)
C10—C11—H11B110.9C11—C10—C9103.3 (3)
H11A—C11—H11B108.9C13—C10—H10108.9
N1—C7—C1110.1 (3)C11—C10—H10108.9
N1—C7—C8110.3 (3)C9—C10—H10108.9
C1—C7—C8115.9 (3)C1—C6—C5121.0 (3)
N1—C7—H7106.7C1—C6—H6119.5
C1—C7—H7106.7C5—C6—H6119.5
C8—C7—H7106.7O3—C14—C13113.2 (3)
O2—C13—C10106.3 (3)O3—C14—H14A108.9
O2—C13—C14111.5 (3)C13—C14—H14A108.9
C10—C13—C14111.6 (3)O3—C14—H14B108.9
O2—C13—H13109.1C13—C14—H14B108.9
C10—C13—H13109.1H14A—C14—H14B107.8
C14—C13—H13109.1C5—C4—C3120.1 (4)
N1—C9—C10102.6 (3)C5—C4—H4119.9
N1—C9—H9A111.2C3—C4—H4119.9
C10—C9—H9A111.2C1—C2—C3121.9 (4)
N1—C9—H9B111.2C1—C2—H2A119.1
C10—C9—H9B111.2C3—C2—H2A119.1
H9A—C9—H9B109.2C4—C5—C6120.0 (3)
O1—C12—N1124.5 (3)C4—C5—H5120.0
O1—C12—C11126.1 (3)C6—C5—H5120.0
N1—C12—C11109.5 (3)C4—C3—C2119.3 (4)
C2—C1—C6117.6 (3)C4—C3—H3A120.4
C2—C1—C7119.3 (3)C2—C3—H3A120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.821.962.743 (3)158
O2—H2···O1i0.821.932.738 (3)170
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H19NO3
Mr249.30
Crystal system, space groupMonoclinic, P21
Temperature (K)83
a, b, c (Å)6.1953 (1), 8.2895 (2), 13.2737 (1)
β (°) 103.353 (2)
V3)663.25 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.18 × 0.10
Data collection
DiffractometerSiemens SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4016, 1461, 1271
Rint0.040
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.099, 1.01
No. of reflections1461
No. of parameters166
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.821.962.743 (3)158.3
O2—H2···O1i0.821.932.738 (3)169.7
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Auckland Division of the Cancer Society of New Zealand, UniServices and the University of Auckland Research Committee.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFava, C., Galeazzi, R., Mobbili, G. & Orena, M. (1999). Heterocycles, 51, 2463–2470.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds