organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1840-o1841

2-[2-Chloro-5-(tri­fluoro­methyl)­phen­yl]hexa­hydro­pyrimidine monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 August 2008; accepted 23 August 2008; online 30 August 2008)

The mol­ecule of the title compound, C11H12ClF3N2·H2O, is a substituted hexa­hydro­pyrimidine. There are two crystallographically independent mol­ecules (A and B) and two water mol­ecules in the asymmetric unit of the title compound. Inter­molecular C—H⋯Cl (× 2), C—H⋯F, and C—H⋯N (× 2) hydrogen bonds generate S(5) ring motifs. The dihedral angle between the two benzene rings is 8.17 (11)°. The F atoms in mol­ecule B are disordered over four positions with refined site-occupancies of ca 0.35/0.19/0.29/0.17 for the four components. In the crystal structure, mol­ecules are arranged into one-dimensional extended chains along the c axis and are further stacked along the a axis by directed four-membered O—H⋯O—H inter­actions, forming two-dimensional networks parallel to the ac plane. The short distances between the centroids of the benzene rings (3.8002–3.8327 Å) indicate the existence of ππ inter­actions. In addition, the crystal structure is further stabilized by N—H⋯O, O—H⋯N (× 4), N—H⋯Cl and C—H⋯O (× 2) hydrogen-bonding inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related literature and properties, see, for example: Riebsomer & Morey (1950[Riebsomer, J. L. & Morey, G. H. (1950). J Org. Chem. 15, 245-248.]); Finch et al. (1952[Finch, H., Peterson, E. A. & Ballard, S. A. (1952). J. Am. Chem. Soc. 74, 2016-2021.]); Drandarov et al. (1999[Drandarov, K., Guggisberg, A. & Hesse, M. (1999). Helv. Chim. Acta, 82, 229-234.]); Siddiqui et al. (1999[Siddiqui, A. Q., Merson-Davies, L. & Cullis, P. M. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3243-3248.]); Horvath (1997[Horvath, D. (1997). J. Med. Chem. 40, 2412-2418.]); Katritzky et al. (2002[Katritzky, A. R., Singh, S. K. & He, H.-Y. (2002). J. Org. Chem. 67, 3115-3117. ]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClF3N2·H2O

  • Mr = 282.69

  • Monoclinic, P 21 /c

  • a = 7.0745 (2) Å

  • b = 18.6119 (5) Å

  • c = 19.0631 (5) Å

  • β = 91.010 (2)°

  • V = 2509.65 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100.0 (1) K

  • 0.24 × 0.05 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.992

  • 30107 measured reflections

  • 7308 independent reflections

  • 4995 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.145

  • S = 1.08

  • 7308 reflections

  • 379 parameters

  • 41 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Wi 0.90 (3) 2.07 (4) 2.885 (3) 151 (3)
N1B—H1NB⋯Cl1Aii 0.89 (3) 2.76 (3) 3.595 (2) 156 (2)
N2B—H2NB⋯O2W 0.84 (3) 2.18 (4) 2.969 (3) 156 (3)
O1W—H1W1⋯N2Biii 0.86 (4) 1.95 (4) 2.815 (3) 174 (4)
O1W—H2W1⋯N2Aiv 0.87 (4) 2.02 (3) 2.867 (3) 165 (3)
O2W—H1W2⋯N1Bv 0.83 (3) 2.09 (3) 2.891 (3) 161 (3)
O2W—H2W2⋯N1Avi 0.87 (4) 1.98 (4) 2.844 (3) 176 (4)
C2A—H2AA⋯O2W 0.93 2.35 3.249 (3) 164
C5A—H5AA⋯F1A 0.93 2.42 2.747 (3) 100
C5A—H5AA⋯N1A 0.93 2.52 2.835 (3) 100
C7A—H7AA⋯Cl1A 0.98 2.67 3.076 (3) 105
C2B—H2BA⋯O1Wiv 0.93 2.52 3.414 (3) 162
C5B—H5BA⋯N2B 0.93 2.53 2.838 (3) 100
C7B—H7BA⋯Cl1B 0.98 2.68 3.070 (3) 104
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Hexahydropyrimidines are prepared classically by condensations of substituted propane-1,3-diamines with aldehydes and ketones. Hexahydropyrimidines are biologically important. N,N'-Bisalkylhexahydro pyrimidines are effective against Ehrlich carcinoma, LK lymphoma, and Staphylococcus aureus. The hexahydropyrimidine skeleton occurs in alkaloids such as verbamethine and verbametrine. N-Substituted hexahydropyrimidines are synthetic intermediates for recently discovered spermidine-nitroimidazole drugs for the treatment of A549 lung carcinoma and structural units in new trypanothione reductase inhibiting ligands for the regulation of oxidative stress in parasitic cells. Benzo-fused hexahydropyrimidines or 1,2,3,4-tetrahydroquinazolines are potential R-adrenergic blockers and possess antiplatelet activity.

In the title compound (I) (Fig. 1), intramolecular C—H···Cl (x 2), C—H···F, and C—H···N (x 2) hydrogen bonds generate S(5) ring motifs (Bernstein et al., 1995). The bond lengths and angles are within normal ranges (Allen et al., 1987). There are two crystallographically independent molecules (A, and B) and two water molecules in the asymmetric unit of the title compound. The dihedral angle between the two benzene rings is 8.17 (11)°. The pyrimidine rings in molecules A and B adopt chair conformation with the puckering parameter (Cremer & Pople, 1975) Q=0.603 (3)°; θ=1.2 (3)°; ϕ=31 (9)° for ring A and Q=0.601 (3)°; θ=2.5 (3)°; ϕ=48 (6)° for ring B. The CF3 fragment in molecule B, was disordered over four positions with the refined site-occupancies of 0.351 (7)/0.189 (5)/0.289 (9)/0.168 (6) for these four components, respectively. In the crystal structure, molecules are arranged into 1-D extended chains along the c-axis and are further stacked along the a-axis by directed four-membered O—H···O—H interactions to form 2-D networks which is parralell to ac-plane. The short distances between the centroids of the benzene rings prove an existence of π-π interactions with distances of 3.8002–3.8327 Å. In addition, the crystal structure is further stabilized by N—H···O, O—H···N (x 4), N—H···Cl, and C—H···O (x 2) hydrogen bonding interactions.

Related literature top

For bond-lengts data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For related literature and properties, see, for example: Riebsomer & Morey (1950); Finch et al. (1952); Drandarov et al. (1999); Siddiqui et al. (1999); Horvath (1997); Katritzky et al. (2002).

Experimental top

The title compound was synthesized based on the previous method (Finch et al., 1952). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

H atoms bound to the N atoms and water molecules were initially found from the difference Fourier map and refined freely with the parent atoms. The rest of the hydrogen atoms were positioned geometrically and refined as riding model with Uiso(H) = 1.2 Ueq(C). The disordered fluorine atoms of the CF3 fragment in molecule B were refined isotropically using C—F bonds distance restraint of 1.300 (5). Their displacement parameters were restrained using rigid bond model.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids. For clarity, only hydrogen atoms of the water molecules and those H atoms involved in intramolecular and intermolecular interactions (shown as dashed lines) were drawn. Open bonds indicate the minor disordered component.
[Figure 2] Fig. 2. The crystal packing of the major component of (I), viewed down the a-axis, showing 1-D extended chains along the c-axis and stacking of these chains along the a-axis. Intra and intermolecular interactions are shown as dashed lines.
[Figure 3] Fig. 3. The crystal structure of the major component of (I), showing 1-D extended chains along the a-axis.
2-[2-Chloro-5-(trifluoromethyl)phenyl]hexahydropyrimidine monohydrate top
Crystal data top
C11H12ClF3N2·H2OF(000) = 1168
Mr = 282.69Dx = 1.496 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6400 reflections
a = 7.0745 (2) Åθ = 2.4–23.0°
b = 18.6119 (5) ŵ = 0.33 mm1
c = 19.0631 (5) ÅT = 100 K
β = 91.010 (2)°Block, colourless
V = 2509.65 (12) Å30.24 × 0.05 × 0.02 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7308 independent reflections
Radiation source: fine-focus sealed tube4995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.924, Tmax = 0.992k = 2620
30107 measured reflectionsl = 1626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0411P)2 + 3.5237P]
where P = (Fo2 + 2Fc2)/3
7308 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.61 e Å3
41 restraintsΔρmin = 0.60 e Å3
Crystal data top
C11H12ClF3N2·H2OV = 2509.65 (12) Å3
Mr = 282.69Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.0745 (2) ŵ = 0.33 mm1
b = 18.6119 (5) ÅT = 100 K
c = 19.0631 (5) Å0.24 × 0.05 × 0.02 mm
β = 91.010 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7308 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4995 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.992Rint = 0.053
30107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06441 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.61 e Å3
7308 reflectionsΔρmin = 0.60 e Å3
379 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.20441 (9)0.10260 (4)0.33890 (4)0.02426 (16)
F1A0.1451 (3)0.40379 (9)0.52585 (9)0.0364 (4)
F2A0.0671 (3)0.44306 (10)0.42408 (11)0.0431 (5)
F3A0.3579 (2)0.43149 (10)0.45284 (10)0.0382 (5)
N1A0.0590 (3)0.15070 (12)0.56007 (12)0.0182 (5)
N2A0.3521 (3)0.10898 (12)0.51715 (12)0.0182 (5)
C1A0.1928 (3)0.18840 (15)0.37603 (14)0.0195 (5)
C2A0.2034 (3)0.24683 (16)0.33062 (14)0.0226 (6)
H2AA0.21290.23970.28250.027*
C3A0.1998 (3)0.31528 (16)0.35780 (14)0.0227 (6)
H3AA0.20560.35480.32800.027*
C4A0.1874 (3)0.32524 (14)0.42968 (14)0.0193 (5)
C5A0.1752 (3)0.26648 (14)0.47436 (14)0.0169 (5)
H5AA0.16670.27390.52240.020*
C6A0.1758 (3)0.19653 (14)0.44817 (13)0.0163 (5)
C7A0.1603 (3)0.13238 (14)0.49649 (13)0.0176 (5)
H7AA0.09460.09320.47190.021*
C8A0.0401 (4)0.08749 (15)0.60549 (14)0.0234 (6)
H8AA0.02770.04980.58050.028*
H8AB0.03090.10000.64680.028*
C9A0.2355 (4)0.06120 (16)0.62705 (15)0.0246 (6)
H9AA0.22490.01840.65580.030*
H9AB0.30030.09790.65450.030*
C10A0.3474 (4)0.04425 (15)0.56176 (15)0.0240 (6)
H10A0.47510.03000.57490.029*
H10B0.28830.00490.53620.029*
C11A0.1886 (4)0.40020 (15)0.45793 (15)0.0224 (6)
Cl1B0.70385 (9)0.13065 (3)0.38275 (3)0.02102 (15)
C11B0.6923 (5)0.43786 (17)0.29294 (17)0.0364 (8)
F40.5910 (12)0.4539 (3)0.2403 (5)0.0226 (12)*0.351 (7)
F50.6856 (18)0.4849 (5)0.3431 (5)0.0241 (10)*0.351 (7)
F60.8935 (10)0.4523 (3)0.2682 (4)0.0163 (15)*0.351 (7)
F4B0.7521 (16)0.4863 (4)0.3361 (5)0.0226 (12)*0.189 (5)
F5B0.716 (2)0.4505 (6)0.2289 (7)0.041 (4)*0.189 (5)
F6B0.4747 (12)0.4605 (4)0.2919 (6)0.021 (2)*0.189 (5)
F4C0.8220 (14)0.4554 (3)0.2541 (5)0.025 (2)*0.288 (9)
F5C0.6978 (15)0.4818 (5)0.3569 (5)0.0241 (10)*0.288 (9)
F6C0.5245 (14)0.4566 (3)0.2635 (5)0.027 (2)*0.288 (9)
F4D0.639 (2)0.4462 (6)0.2155 (8)0.0226 (12)*0.167 (6)
F5D0.619 (2)0.4824 (6)0.3297 (7)0.0241 (10)*0.167 (6)
F6D0.866 (2)0.4612 (8)0.2826 (8)0.029 (4)*0.167 (6)
N1B0.8534 (3)0.15394 (12)0.20979 (12)0.0178 (5)
N2B0.5654 (3)0.20191 (12)0.16508 (12)0.0189 (5)
C1B0.6915 (3)0.21978 (14)0.35477 (14)0.0183 (5)
C2B0.6998 (3)0.27234 (15)0.40623 (14)0.0200 (5)
H2BA0.70620.25990.45350.024*
C3B0.6985 (4)0.34360 (15)0.38604 (15)0.0230 (6)
H3BA0.70450.37970.41970.028*
C4B0.6883 (4)0.36098 (15)0.31531 (15)0.0226 (6)
C5B0.6763 (3)0.30779 (14)0.26472 (14)0.0204 (5)
H5BA0.66870.32050.21760.024*
C6B0.6756 (3)0.23534 (14)0.28350 (13)0.0167 (5)
C7B0.6615 (3)0.17660 (14)0.22863 (14)0.0181 (5)
H7BA0.59270.13550.24770.022*
C8B0.8473 (4)0.09305 (15)0.16030 (15)0.0241 (6)
H8BA0.78400.05240.18140.029*
H8BB0.97480.07850.14880.029*
C9B0.7411 (4)0.11657 (15)0.09448 (15)0.0243 (6)
H9BA0.81090.15440.07140.029*
H9BB0.72940.07640.06230.029*
C10B0.5465 (4)0.14364 (15)0.11302 (16)0.0251 (6)
H10C0.48170.16130.07120.030*
H10D0.47230.10470.13220.030*
O1W0.3328 (3)0.80736 (12)0.43314 (11)0.0258 (5)
O2W0.1595 (3)0.24257 (12)0.16075 (11)0.0240 (4)
H1NA0.054 (5)0.1675 (17)0.5461 (17)0.034 (9)*
H2NA0.410 (5)0.0988 (19)0.478 (2)0.046 (11)*
H1NB0.908 (4)0.1397 (17)0.2501 (17)0.029 (9)*
H2NB0.457 (5)0.2150 (17)0.1772 (16)0.028 (8)*
H1W10.370 (5)0.777 (2)0.402 (2)0.053 (12)*
H2W10.440 (5)0.8277 (19)0.4430 (18)0.037 (10)*
H1W20.056 (5)0.2231 (18)0.1680 (18)0.035 (9)*
H2W20.131 (5)0.277 (2)0.1315 (19)0.043 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0223 (3)0.0306 (4)0.0199 (3)0.0021 (3)0.0001 (2)0.0072 (3)
F1A0.0535 (11)0.0211 (9)0.0352 (11)0.0018 (8)0.0155 (9)0.0009 (8)
F2A0.0460 (11)0.0220 (10)0.0606 (14)0.0058 (8)0.0230 (10)0.0078 (9)
F3A0.0254 (9)0.0295 (10)0.0599 (13)0.0107 (7)0.0116 (8)0.0090 (9)
N1A0.0174 (10)0.0182 (12)0.0192 (11)0.0007 (8)0.0042 (8)0.0018 (9)
N2A0.0168 (10)0.0200 (12)0.0180 (12)0.0028 (8)0.0025 (8)0.0027 (9)
C1A0.0153 (11)0.0243 (14)0.0188 (13)0.0012 (10)0.0013 (9)0.0022 (11)
C2A0.0179 (12)0.0352 (17)0.0146 (13)0.0008 (11)0.0013 (10)0.0029 (12)
C3A0.0185 (12)0.0286 (16)0.0209 (14)0.0020 (10)0.0018 (10)0.0100 (12)
C4A0.0142 (11)0.0205 (14)0.0232 (14)0.0007 (9)0.0007 (10)0.0047 (11)
C5A0.0152 (11)0.0205 (14)0.0150 (12)0.0008 (9)0.0007 (9)0.0005 (10)
C6A0.0141 (11)0.0192 (13)0.0155 (12)0.0020 (9)0.0013 (9)0.0005 (10)
C7A0.0169 (11)0.0180 (13)0.0179 (13)0.0004 (9)0.0000 (9)0.0033 (11)
C8A0.0277 (13)0.0231 (15)0.0197 (14)0.0025 (11)0.0076 (11)0.0024 (11)
C9A0.0332 (14)0.0208 (14)0.0199 (14)0.0039 (11)0.0027 (11)0.0056 (11)
C10A0.0282 (14)0.0174 (14)0.0264 (15)0.0069 (11)0.0008 (11)0.0043 (11)
C11A0.0185 (12)0.0246 (15)0.0242 (15)0.0010 (10)0.0002 (10)0.0064 (12)
Cl1B0.0223 (3)0.0196 (3)0.0212 (3)0.0010 (2)0.0028 (2)0.0060 (3)
C11B0.057 (2)0.0221 (16)0.0300 (18)0.0024 (14)0.0009 (15)0.0044 (14)
N1B0.0179 (10)0.0163 (11)0.0191 (12)0.0035 (8)0.0014 (9)0.0031 (9)
N2B0.0137 (10)0.0225 (12)0.0204 (12)0.0015 (8)0.0005 (8)0.0015 (9)
C1B0.0144 (11)0.0186 (13)0.0221 (14)0.0010 (9)0.0028 (10)0.0033 (11)
C2B0.0157 (11)0.0246 (15)0.0197 (14)0.0009 (10)0.0025 (10)0.0001 (11)
C3B0.0201 (12)0.0236 (15)0.0253 (15)0.0010 (10)0.0020 (10)0.0045 (12)
C4B0.0202 (12)0.0185 (14)0.0293 (15)0.0012 (10)0.0018 (11)0.0016 (12)
C5B0.0204 (12)0.0203 (14)0.0204 (14)0.0002 (10)0.0026 (10)0.0035 (11)
C6B0.0132 (11)0.0175 (13)0.0196 (13)0.0000 (9)0.0034 (9)0.0007 (10)
C7B0.0165 (11)0.0182 (13)0.0199 (13)0.0008 (9)0.0034 (10)0.0031 (11)
C8B0.0299 (14)0.0160 (14)0.0263 (15)0.0040 (11)0.0001 (11)0.0012 (11)
C9B0.0321 (14)0.0205 (15)0.0203 (14)0.0019 (11)0.0006 (11)0.0025 (11)
C10B0.0264 (14)0.0219 (15)0.0270 (15)0.0039 (11)0.0040 (11)0.0010 (12)
O1W0.0178 (9)0.0318 (12)0.0279 (11)0.0006 (8)0.0029 (8)0.0099 (10)
O2W0.0183 (9)0.0300 (12)0.0236 (11)0.0010 (8)0.0003 (8)0.0074 (9)
Geometric parameters (Å, º) top
Cl1A—C1A1.749 (3)C11B—F51.298 (10)
F1A—C11A1.338 (3)C11B—F6D1.323 (16)
F2A—C11A1.331 (3)C11B—F6C1.350 (8)
F3A—C11A1.337 (3)C11B—F5C1.467 (10)
N1A—C7A1.459 (3)C11B—C4B1.493 (4)
N1A—C8A1.468 (3)C11B—F4D1.525 (14)
N1A—H1NA0.90 (3)C11B—F61.532 (7)
N2A—C7A1.472 (3)N1B—C7B1.472 (3)
N2A—C10A1.475 (3)N1B—C8B1.475 (3)
N2A—H2NA0.88 (4)N1B—H1NB0.89 (3)
C1A—C6A1.391 (4)N2B—C7B1.457 (3)
C1A—C2A1.393 (4)N2B—C10B1.475 (4)
C2A—C3A1.376 (4)N2B—H2NB0.84 (3)
C2A—H2AA0.9300C1B—C2B1.386 (4)
C3A—C4A1.387 (4)C1B—C6B1.392 (4)
C3A—H3AA0.9300C2B—C3B1.381 (4)
C4A—C5A1.390 (4)C2B—H2BA0.9300
C4A—C11A1.495 (4)C3B—C4B1.387 (4)
C5A—C6A1.394 (4)C3B—H3BA0.9300
C5A—H5AA0.9300C4B—C5B1.384 (4)
C6A—C7A1.513 (4)C5B—C6B1.395 (4)
C7A—H7AA0.9800C5B—H5BA0.9300
C8A—C9A1.516 (4)C6B—C7B1.515 (4)
C8A—H8AA0.9700C7B—H7BA0.9800
C8A—H8AB0.9700C8B—C9B1.516 (4)
C9A—C10A1.520 (4)C8B—H8BA0.9700
C9A—H9AA0.9700C8B—H8BB0.9700
C9A—H9AB0.9700C9B—C10B1.514 (4)
C10A—H10A0.9700C9B—H9BA0.9700
C10A—H10B0.9700C9B—H9BB0.9700
Cl1B—C1B1.744 (3)C10B—H10C0.9700
C11B—F5D1.209 (11)C10B—H10D0.9700
C11B—F4C1.233 (8)O1W—H1W10.86 (4)
C11B—F5B1.257 (13)O1W—H2W10.87 (4)
C11B—F41.258 (6)O2W—H1W20.83 (4)
C11B—F4B1.287 (5)O2W—H2W20.87 (4)
C7A—N1A—C8A110.7 (2)F4—C11B—F5C122.5 (6)
C7A—N1A—H1NA107 (2)F4B—C11B—F5C22.3 (6)
C8A—N1A—H1NA111 (2)F5—C11B—F5C9.3 (7)
C7A—N2A—C10A111.5 (2)F6D—C11B—F5C86.0 (9)
C7A—N2A—H2NA106 (2)F6C—C11B—F5C102.2 (6)
C10A—N2A—H2NA109 (2)F5D—C11B—C4B118.8 (6)
C6A—C1A—C2A122.4 (2)F4C—C11B—C4B116.3 (4)
C6A—C1A—Cl1A120.3 (2)F5B—C11B—C4B117.4 (6)
C2A—C1A—Cl1A117.2 (2)F4—C11B—C4B116.2 (3)
C3A—C2A—C1A119.2 (2)F4B—C11B—C4B119.7 (5)
C3A—C2A—H2AA120.4F5—C11B—C4B115.7 (5)
C1A—C2A—H2AA120.4F6D—C11B—C4B112.3 (7)
C2A—C3A—C4A119.8 (3)F6C—C11B—C4B110.3 (4)
C2A—C3A—H3AA120.1F5C—C11B—C4B107.3 (5)
C4A—C3A—H3AA120.1F5D—C11B—F4D113.0 (8)
C3A—C4A—C5A120.4 (3)F4C—C11B—F4D64.3 (7)
C3A—C4A—C11A118.7 (2)F5B—C11B—F4D22.4 (7)
C5A—C4A—C11A120.9 (2)F4—C11B—F4D22.6 (5)
C4A—C5A—C6A121.0 (2)F4B—C11B—F4D128.4 (7)
C4A—C5A—H5AA119.5F5—C11B—F4D129.3 (6)
C6A—C5A—H5AA119.5F6D—C11B—F4D92.1 (8)
C1A—C6A—C5A117.2 (2)F6C—C11B—F4D51.0 (7)
C1A—C6A—C7A121.6 (2)F5C—C11B—F4D138.6 (6)
C5A—C6A—C7A121.2 (2)C4B—C11B—F4D111.6 (5)
N1A—C7A—N2A108.1 (2)F5D—C11B—F6118.0 (7)
N1A—C7A—C6A111.3 (2)F4C—C11B—F620.4 (5)
N2A—C7A—C6A108.7 (2)F5B—C11B—F661.9 (8)
N1A—C7A—H7AA109.6F4—C11B—F6103.4 (5)
N2A—C7A—H7AA109.6F4B—C11B—F677.1 (6)
C6A—C7A—H7AA109.6F5—C11B—F698.9 (6)
N1A—C8A—C9A109.0 (2)F6D—C11B—F612.7 (7)
N1A—C8A—H8AA109.9F6C—C11B—F6129.9 (6)
C9A—C8A—H8AA109.9F5C—C11B—F698.4 (6)
N1A—C8A—H8AB109.9C4B—C11B—F6106.2 (3)
C9A—C8A—H8AB109.9F4D—C11B—F684.2 (6)
H8AA—C8A—H8AB108.3C7B—N1B—C8B111.1 (2)
C8A—C9A—C10A109.3 (2)C7B—N1B—H1NB105 (2)
C8A—C9A—H9AA109.8C8B—N1B—H1NB109 (2)
C10A—C9A—H9AA109.8C7B—N2B—C10B110.9 (2)
C8A—C9A—H9AB109.8C7B—N2B—H2NB106 (2)
C10A—C9A—H9AB109.8C10B—N2B—H2NB109 (2)
H9AA—C9A—H9AB108.3C2B—C1B—C6B123.1 (2)
N2A—C10A—C9A108.6 (2)C2B—C1B—Cl1B117.0 (2)
N2A—C10A—H10A110.0C6B—C1B—Cl1B119.9 (2)
C9A—C10A—H10A110.0C3B—C2B—C1B118.7 (3)
N2A—C10A—H10B110.0C3B—C2B—H2BA120.6
C9A—C10A—H10B110.0C1B—C2B—H2BA120.6
H10A—C10A—H10B108.3C2B—C3B—C4B119.7 (3)
F2A—C11A—F3A106.0 (2)C2B—C3B—H3BA120.2
F2A—C11A—F1A106.4 (2)C4B—C3B—H3BA120.2
F3A—C11A—F1A105.7 (2)C5B—C4B—C3B120.8 (3)
F2A—C11A—C4A112.6 (2)C5B—C4B—C11B119.2 (3)
F3A—C11A—C4A112.3 (2)C3B—C4B—C11B120.0 (3)
F1A—C11A—C4A113.3 (2)C4B—C5B—C6B120.9 (3)
F5D—C11B—F4C119.8 (7)C4B—C5B—H5BA119.6
F5D—C11B—F5B120.0 (8)C6B—C5B—H5BA119.6
F4C—C11B—F5B41.9 (7)C1B—C6B—C5B116.8 (2)
F5D—C11B—F493.2 (7)C1B—C6B—C7B121.8 (2)
F4C—C11B—F483.0 (5)C5B—C6B—C7B121.4 (2)
F5B—C11B—F442.6 (8)N2B—C7B—N1B108.0 (2)
F5D—C11B—F4B44.6 (8)N2B—C7B—C6B111.4 (2)
F4C—C11B—F4B87.6 (7)N1B—C7B—C6B109.0 (2)
F5B—C11B—F4B116.3 (8)N2B—C7B—H7BA109.5
F4—C11B—F4B121.4 (6)N1B—C7B—H7BA109.5
F5D—C11B—F524.3 (6)C6B—C7B—H7BA109.5
F4C—C11B—F5107.5 (6)N1B—C8B—C9B108.4 (2)
F5B—C11B—F5126.7 (7)N1B—C8B—H8BA110.0
F4—C11B—F5113.6 (5)C9B—C8B—H8BA110.0
F4B—C11B—F521.9 (6)N1B—C8B—H8BB110.0
F5D—C11B—F6D105.7 (9)C9B—C8B—H8BB110.0
F4C—C11B—F6D28.3 (7)H8BA—C8B—H8BB108.4
F5B—C11B—F6D69.8 (10)C10B—C9B—C8B110.0 (2)
F4—C11B—F6D108.7 (8)C10B—C9B—H9BA109.7
F4B—C11B—F6D64.5 (8)C8B—C9B—H9BA109.7
F5—C11B—F6D86.2 (8)C10B—C9B—H9BB109.7
F5D—C11B—F6C71.4 (8)C8B—C9B—H9BB109.7
F4C—C11B—F6C109.8 (6)H9BA—C9B—H9BB108.2
F5B—C11B—F6C71.2 (8)N2B—C10B—C9B109.2 (2)
F4—C11B—F6C28.7 (4)N2B—C10B—H10C109.8
F4B—C11B—F6C111.2 (6)C9B—C10B—H10C109.8
F5—C11B—F6C95.1 (6)N2B—C10B—H10D109.8
F6D—C11B—F6C131.7 (8)C9B—C10B—H10D109.8
F5D—C11B—F5C30.9 (8)H10C—C10B—H10D108.3
F4C—C11B—F5C110.0 (7)H1W1—O1W—H2W199 (3)
F5B—C11B—F5C134.4 (7)H1W2—O2W—H2W2104 (3)
C6A—C1A—C2A—C3A0.9 (4)F4—C11B—C4B—C5B36.6 (7)
Cl1A—C1A—C2A—C3A178.32 (19)F4B—C11B—C4B—C5B161.8 (7)
C1A—C2A—C3A—C4A0.6 (4)F5—C11B—C4B—C5B173.8 (7)
C2A—C3A—C4A—C5A1.1 (4)F6D—C11B—C4B—C5B89.4 (8)
C2A—C3A—C4A—C11A178.5 (2)F6C—C11B—C4B—C5B67.3 (6)
C3A—C4A—C5A—C6A0.2 (4)F5C—C11B—C4B—C5B177.8 (5)
C11A—C4A—C5A—C6A179.4 (2)F4D—C11B—C4B—C5B12.4 (7)
C2A—C1A—C6A—C5A1.9 (4)F6—C11B—C4B—C5B77.7 (4)
Cl1A—C1A—C6A—C5A177.39 (18)F5D—C11B—C4B—C3B34.1 (9)
C2A—C1A—C6A—C7A178.7 (2)F4C—C11B—C4B—C3B120.7 (6)
Cl1A—C1A—C6A—C7A2.0 (3)F5B—C11B—C4B—C3B168.0 (8)
C4A—C5A—C6A—C1A1.3 (3)F4—C11B—C4B—C3B144.0 (6)
C4A—C5A—C6A—C7A179.3 (2)F4B—C11B—C4B—C3B17.5 (7)
C8A—N1A—C7A—N2A62.4 (3)F5—C11B—C4B—C3B6.9 (8)
C8A—N1A—C7A—C6A178.3 (2)F6D—C11B—C4B—C3B89.9 (8)
C10A—N2A—C7A—N1A61.8 (3)F6C—C11B—C4B—C3B113.4 (6)
C10A—N2A—C7A—C6A177.3 (2)F5C—C11B—C4B—C3B2.8 (6)
C1A—C6A—C7A—N1A153.3 (2)F4D—C11B—C4B—C3B168.2 (7)
C5A—C6A—C7A—N1A27.3 (3)F6—C11B—C4B—C3B101.7 (4)
C1A—C6A—C7A—N2A87.8 (3)C3B—C4B—C5B—C6B0.5 (4)
C5A—C6A—C7A—N2A91.6 (3)C11B—C4B—C5B—C6B178.9 (3)
C7A—N1A—C8A—C9A61.3 (3)C2B—C1B—C6B—C5B2.7 (4)
N1A—C8A—C9A—C10A57.6 (3)Cl1B—C1B—C6B—C5B176.75 (18)
C7A—N2A—C10A—C9A59.3 (3)C2B—C1B—C6B—C7B178.4 (2)
C8A—C9A—C10A—N2A56.3 (3)Cl1B—C1B—C6B—C7B2.2 (3)
C3A—C4A—C11A—F2A48.9 (3)C4B—C5B—C6B—C1B1.3 (4)
C5A—C4A—C11A—F2A131.5 (3)C4B—C5B—C6B—C7B179.7 (2)
C3A—C4A—C11A—F3A70.7 (3)C10B—N2B—C7B—N1B62.4 (3)
C5A—C4A—C11A—F3A108.9 (3)C10B—N2B—C7B—C6B178.0 (2)
C3A—C4A—C11A—F1A169.7 (2)C8B—N1B—C7B—N2B63.0 (3)
C5A—C4A—C11A—F1A10.7 (3)C8B—N1B—C7B—C6B175.8 (2)
C6B—C1B—C2B—C3B2.1 (4)C1B—C6B—C7B—N2B154.7 (2)
Cl1B—C1B—C2B—C3B177.29 (19)C5B—C6B—C7B—N2B26.4 (3)
C1B—C2B—C3B—C4B0.2 (4)C1B—C6B—C7B—N1B86.3 (3)
C2B—C3B—C4B—C5B1.0 (4)C5B—C6B—C7B—N1B92.6 (3)
C2B—C3B—C4B—C11B178.3 (3)C7B—N1B—C8B—C9B60.2 (3)
F5D—C11B—C4B—C5B146.6 (9)N1B—C8B—C9B—C10B56.1 (3)
F4C—C11B—C4B—C5B58.6 (7)C7B—N2B—C10B—C9B59.7 (3)
F5B—C11B—C4B—C5B11.4 (9)C8B—C9B—C10B—N2B56.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Wi0.90 (3)2.07 (4)2.885 (3)151 (3)
N1B—H1NB···Cl1Aii0.89 (3)2.76 (3)3.595 (2)156 (2)
N2B—H2NB···O2W0.84 (3)2.18 (4)2.969 (3)156 (3)
O1W—H1W1···N2Biii0.86 (4)1.95 (4)2.815 (3)174 (4)
O1W—H2W1···N2Aiv0.87 (4)2.02 (3)2.867 (3)165 (3)
O2W—H1W2···N1Bv0.83 (3)2.09 (3)2.891 (3)161 (3)
O2W—H2W2···N1Avi0.87 (4)1.98 (4)2.844 (3)176 (4)
C2A—H2AA···O2W0.932.353.249 (3)164
C5A—H5AA···F1A0.932.422.747 (3)100
C5A—H5AA···N1A0.932.522.835 (3)100
C7A—H7AA···Cl1A0.982.673.076 (3)105
C2B—H2BA···O1Wiv0.932.523.414 (3)162
C5B—H5BA···N2B0.932.532.838 (3)100
C7B—H7BA···Cl1B0.982.683.070 (3)104
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H12ClF3N2·H2O
Mr282.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.0745 (2), 18.6119 (5), 19.0631 (5)
β (°) 91.010 (2)
V3)2509.65 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.24 × 0.05 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.924, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
30107, 7308, 4995
Rint0.053
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.145, 1.08
No. of reflections7308
No. of parameters379
No. of restraints41
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.60

Computer programs: APEX2 (Bruker, 2005), APEX2, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Wi0.90 (3)2.07 (4)2.885 (3)151 (3)
N1B—H1NB···Cl1Aii0.89 (3)2.76 (3)3.595 (2)156 (2)
N2B—H2NB···O2W0.84 (3)2.18 (4)2.969 (3)156 (3)
O1W—H1W1···N2Biii0.86 (4)1.95 (4)2.815 (3)174 (4)
O1W—H2W1···N2Aiv0.87 (4)2.02 (3)2.867 (3)165 (3)
O2W—H1W2···N1Bv0.83 (3)2.09 (3)2.891 (3)161 (3)
O2W—H2W2···N1Avi0.87 (4)1.98 (4)2.844 (3)176 (4)
C2A—H2AA···O2W0.932.353.249 (3)164
C5A—H5AA···F1A0.932.422.747 (3)100
C5A—H5AA···N1A0.932.522.835 (3)100
C7A—H7AA···Cl1A0.982.673.076 (3)105
C2B—H2BA···O1Wiv0.932.523.414 (3)162
C5B—H5BA···N2B0.932.532.838 (3)100
C7B—H7BA···Cl1B0.982.683.070 (3)104
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x, y+1/2, z1/2.
 

Footnotes

Additional correspondance author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDrandarov, K., Guggisberg, A. & Hesse, M. (1999). Helv. Chim. Acta, 82, 229–234.  CrossRef CAS Google Scholar
First citationFinch, H., Peterson, E. A. & Ballard, S. A. (1952). J. Am. Chem. Soc. 74, 2016–2021.  CrossRef CAS Web of Science Google Scholar
First citationHorvath, D. (1997). J. Med. Chem. 40, 2412–2418.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKatritzky, A. R., Singh, S. K. & He, H.-Y. (2002). J. Org. Chem. 67, 3115–3117.   Web of Science CrossRef PubMed CAS Google Scholar
First citationRiebsomer, J. L. & Morey, G. H. (1950). J Org. Chem. 15, 245–248.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, A. Q., Merson-Davies, L. & Cullis, P. M. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3243–3248.  Web of Science CrossRef Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1840-o1841
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds