organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1856-o1857

2-{[4-(Phenyldiazenyl)phenyl]imino­methyl}phenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bChemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK, and cChemistry Department, University of Isfahan, Isfahan 81746-73441, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 22 August 2008; accepted 23 August 2008; online 30 August 2008)

The mol­ecule of the title compound, C19H15N3O, is approximately planar and displays a trans configuration with respect to the C=N and N=N double bonds. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. The dihedral angles between the hydroxy­phenyl ring and the phenyl and benzene rings are 4.31 (8) and 6.60 (8)°, respectively. The dihedral angle between the phenyl and benzene rings linked by the azo group is 2.70 (8)°. The imino group is coplanar with the hydroxy­phenyl ring, as shown by the C—C—C—N torsion angle of −1.8 (2)°. The azo group is disordered over two position with refined site-occupancy factors of ca 0.87/0.13. In the crystal structure, mol­ecules are linked together by inter­molecular C—H⋯O inter­actions along the c axis and also are packed as one-dimensional extended chains down the b axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Vani & Vijayan (1977[Vani, G. V. & Vijayan, K. (1977). Acta Cryst. B33, 2236-2240.]); Revannasiddaiah et al. (1997[Revannasiddaiah, D., Lokanath, N. K., Sridhar, M. A., Prasad, J. S. & Gowda, D. K. (1997). Z. Kristallogr. 212, 387-388.]). For background to the applications, see, for example: Liu et al. (1990[Liu, Z. F., Hashimoto, K. & Fujishima, A. (1990). Nature (London), 347, 658-660.]); Ikeda & Tsutsumi (1995[Ikeda, T. & Tsutsumi, O. (1995). Science, 268, 1873-1875.]); Evans et al. (1980[Evans, N. A., Allen, N. S. & McKellar, J. F. (1980). Photochemistry of Dyed and Pigmented Polymers, pp. 93-159. London: Elsevier.]); Griffiths & Allen et al. (1980[Griffiths, J. & Allen, N. S. (1980). Developments in Polymer Photochemistry, Vol. 1, pp. 145-189. London: Applied Science Publishers.]); Flamingi & Monti (1985[Flamingi, L. & Monti, S. (1985). J. Phys. Chem. 89, 3702-3707.]); Leaver et al. (1980[Leaver, I. H., Allen, N. S. & McKellar, J. F. (1980). Photochemistry of Dyed and Pigmented Polymers, pp. 161-245. London: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N3O

  • Mr = 301.34

  • Monoclinic, P 21 /c

  • a = 26.0537 (10) Å

  • b = 4.5475 (2) Å

  • c = 12.0423 (4) Å

  • β = 90.600 (2)°

  • V = 1426.68 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.52 × 0.20 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.995

  • 35506 measured reflections

  • 4662 independent reflections

  • 3356 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.212

  • S = 1.08

  • 4662 reflections

  • 220 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 1.01 (3) 1.66 (2) 2.5853 (18) 150 (2)
C5—H5A⋯O1i 0.93 2.59 3.386 (2) 144
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Azobenzene and its derivatives have attracted much attention for their high potential in industrial applications, such as liquid crystals, light-driven switches and image-storage devices (Liu et al., 1990; Ikeda & Tsutsumi, 1995). In addition, azo compounds represent the dominant class of synthetic colourant employed in the textile, printing, agrochemical and pharmaceutical industries. As a result of the presence of the stable chromophoric azo group (NN) which is capabale of linking different aromatic systems with electron-donating and/or electron-withdrawing groups, dyes can be designed to resist chemical or photochemical degradation processes (Evans et al., 1980; Griffiths & Allen, 1980; Leaver et al., 1980; Flamingi & Monti, 1985).

In the title compound (I) (Fig. 1), the molecule adopts a trans configuration with respect to the CN and NN double bonds. The bond lengths and angles are within the normal ranges (Allen et al., 1987). An intramolecular O—H···N hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995). The dihedral angles between the hydroxyphenyl ring and the two phenyl rings are 4.31 (8) and 6.60 (8)°, respectively. The dihedral angle between the two phenyl rings joined by the azo group is 2.70 (8)°. The azo group is disordered over two position and the refined site-occupancy factors of the disordered parts are 0.869 (3)/0.131 (3). The imino group is coplanar with the hydroxyohenyl ring as it can be shown by the C1—C6—C7—N1 torsion angle of -1.8 (2)°. In the crystal structure, molecules are linked together by intermolecular C—H···O interactions (Table 1) along the c axis and also are packed as 1-D extended chains down the b axis (Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Vani & Vijayan (1977); Revannasiddaiah et al. (1997). For background to the applications, see, for example: Liu et al. (1990); Ikeda & Tsutsumi (1995); Evans et al. (1980); Griffiths & Allen et al. (1980); Flamingi & Monti (1985); Leaver et al. (1980).

Experimental top

The title compound was synthesized by mixing equimolar amount of the p-phenylazo aniline and salicylaldehyde in ethanol under reflux condition for 1 h. Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

The H atom bound to the oxygen atom was located from the difference Fourier map and refined freely with the parent atom. The rest of the hydrogen atoms were positioned geometrically and refined as riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The highest peak is located 0.73 Å from C11 and the deepest hole is located 0.66 Å from C19.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. Intramolecular hydrogen bond is shown as a dashed line. Open bonds indicate the minor disordered component.
[Figure 2] Fig. 2. The crystal packing of the major component of (I), viewed down the b-axis, showing stacking of molecules. Intramolecular and intermolecular interactions are shown as dashed lines.
[Figure 3] Fig. 3. The crystal structure of the major component of (I), showing 1-D extended chains along the b-axis. Intramolecular and intermolecular interactions are shown as dashed lines.
2-{[4-(Phenyldiazenyl)phenyl]iminomethyl}phenol top
Crystal data top
C19H15N3OF(000) = 632
Mr = 301.34Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4872 reflections
a = 26.0537 (10) Åθ = 3.1–31.1°
b = 4.5475 (2) ŵ = 0.09 mm1
c = 12.0423 (4) ÅT = 100 K
β = 90.600 (2)°Plate, yellow
V = 1426.68 (10) Å30.52 × 0.20 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4662 independent reflections
Radiation source: fine-focus sealed tube3356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 31.4°, θmin = 0.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3838
Tmin = 0.955, Tmax = 0.995k = 66
35506 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1093P)2 + 0.6819P]
where P = (Fo2 + 2Fc2)/3
4662 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C19H15N3OV = 1426.68 (10) Å3
Mr = 301.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 26.0537 (10) ŵ = 0.09 mm1
b = 4.5475 (2) ÅT = 100 K
c = 12.0423 (4) Å0.52 × 0.20 × 0.06 mm
β = 90.600 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4662 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3356 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.995Rint = 0.053
35506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.88 e Å3
4662 reflectionsΔρmin = 0.53 e Å3
220 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.34931 (5)0.2401 (3)0.48842 (10)0.0256 (3)
N10.31269 (5)0.0728 (3)0.64837 (11)0.0163 (3)
N2A0.16497 (6)0.9300 (4)0.75288 (13)0.0178 (4)0.869 (3)
N3A0.16275 (6)1.0337 (4)0.85014 (13)0.0181 (4)0.869 (3)
N2B0.1809 (4)0.924 (3)0.8304 (9)0.0178 (4)0.131 (3)
N3B0.1469 (5)1.036 (3)0.7639 (9)0.0181 (4)0.131 (3)
C10.38180 (6)0.3582 (4)0.56362 (13)0.0188 (3)
C20.41797 (7)0.5647 (4)0.52832 (14)0.0226 (4)
H2A0.41960.61720.45380.027*
C30.45127 (7)0.6905 (4)0.60503 (15)0.0240 (4)
H3A0.47570.82470.58110.029*
C40.44882 (6)0.6195 (4)0.71718 (14)0.0225 (4)
H4A0.47090.70860.76810.027*
C50.41316 (6)0.4151 (4)0.75211 (14)0.0202 (3)
H5A0.41150.36680.82700.024*
C60.37947 (6)0.2794 (3)0.67662 (13)0.0164 (3)
C70.34330 (6)0.0621 (4)0.71608 (13)0.0169 (3)
H7A0.34210.01910.79150.020*
C80.27744 (6)0.2872 (3)0.68533 (13)0.0165 (3)
C90.24374 (6)0.3987 (4)0.60503 (14)0.0197 (3)
H9A0.24570.33060.53240.024*
C100.20753 (6)0.6087 (4)0.63155 (15)0.0227 (4)
H10A0.18520.67890.57700.027*
C110.20438 (6)0.7148 (4)0.73884 (15)0.0224 (4)
C120.23831 (7)0.6073 (4)0.82083 (15)0.0236 (4)
H12A0.23650.67830.89310.028*
C130.27454 (6)0.3952 (4)0.79410 (13)0.0199 (3)
H13A0.29690.32480.84850.024*
C140.12253 (7)1.2474 (4)0.86184 (16)0.0252 (4)
C150.08839 (7)1.3377 (4)0.77750 (16)0.0270 (4)
H15A0.09081.25910.70650.032*
C160.05072 (7)1.5467 (4)0.80128 (15)0.0256 (4)
H16A0.02791.60820.74600.031*
C170.04748 (6)1.6621 (4)0.90783 (15)0.0230 (4)
H17A0.02221.79950.92420.028*
C180.08194 (7)1.5724 (4)0.98979 (15)0.0254 (4)
H18A0.07981.65151.06080.031*
C190.11925 (7)1.3670 (4)0.96659 (16)0.0263 (4)
H19A0.14231.30901.02190.032*
H1O10.3277 (10)0.093 (6)0.530 (2)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0321 (7)0.0284 (7)0.0164 (5)0.0085 (5)0.0000 (5)0.0010 (5)
N10.0171 (6)0.0130 (6)0.0188 (6)0.0002 (5)0.0030 (5)0.0009 (5)
N2A0.0183 (8)0.0145 (8)0.0206 (7)0.0000 (6)0.0030 (6)0.0009 (6)
N3A0.0181 (8)0.0152 (8)0.0212 (7)0.0002 (6)0.0036 (6)0.0018 (6)
N2B0.0183 (8)0.0145 (8)0.0206 (7)0.0000 (6)0.0030 (6)0.0009 (6)
N3B0.0181 (8)0.0152 (8)0.0212 (7)0.0002 (6)0.0036 (6)0.0018 (6)
C10.0203 (7)0.0171 (8)0.0190 (7)0.0001 (6)0.0032 (6)0.0003 (6)
C20.0263 (8)0.0204 (8)0.0213 (7)0.0027 (7)0.0077 (6)0.0029 (6)
C30.0218 (8)0.0180 (8)0.0323 (9)0.0036 (6)0.0085 (6)0.0017 (7)
C40.0192 (8)0.0198 (8)0.0284 (8)0.0008 (6)0.0002 (6)0.0014 (6)
C50.0205 (7)0.0189 (8)0.0213 (7)0.0007 (6)0.0004 (6)0.0010 (6)
C60.0154 (7)0.0146 (7)0.0192 (7)0.0014 (5)0.0031 (5)0.0004 (6)
C70.0178 (7)0.0158 (7)0.0172 (7)0.0015 (6)0.0021 (5)0.0011 (6)
C80.0156 (7)0.0130 (7)0.0210 (7)0.0012 (5)0.0044 (5)0.0013 (6)
C90.0190 (7)0.0159 (8)0.0241 (8)0.0005 (6)0.0015 (6)0.0007 (6)
C100.0198 (8)0.0162 (8)0.0322 (9)0.0007 (6)0.0006 (6)0.0029 (7)
C110.0186 (7)0.0136 (8)0.0353 (9)0.0004 (6)0.0089 (6)0.0003 (7)
C120.0274 (8)0.0186 (8)0.0249 (8)0.0044 (7)0.0096 (6)0.0049 (6)
C130.0215 (8)0.0184 (8)0.0200 (7)0.0014 (6)0.0058 (6)0.0026 (6)
C140.0194 (8)0.0139 (8)0.0426 (10)0.0005 (6)0.0083 (7)0.0010 (7)
C150.0304 (9)0.0222 (9)0.0286 (9)0.0042 (7)0.0081 (7)0.0068 (7)
C160.0235 (8)0.0243 (9)0.0289 (8)0.0010 (7)0.0002 (7)0.0009 (7)
C170.0195 (8)0.0185 (8)0.0310 (9)0.0039 (6)0.0065 (6)0.0006 (7)
C180.0278 (9)0.0217 (9)0.0268 (8)0.0008 (7)0.0027 (6)0.0013 (7)
C190.0215 (8)0.0198 (9)0.0376 (10)0.0002 (6)0.0002 (7)0.0062 (7)
Geometric parameters (Å, º) top
O1—C11.345 (2)C8—C91.395 (2)
O1—H1O11.01 (3)C8—C131.402 (2)
N1—C71.290 (2)C9—C101.382 (2)
N1—C81.4146 (19)C9—H9A0.9300
N2A—N3A1.264 (2)C10—C111.383 (2)
N2A—C111.430 (2)C10—H10A0.9300
N3A—C141.437 (2)C11—C121.406 (3)
N2B—N3B1.292 (17)C12—C131.390 (2)
N2B—C111.584 (12)C12—H12A0.9300
N3B—C141.655 (12)C13—H13A0.9300
C1—C21.400 (2)C14—C191.377 (3)
C1—C61.409 (2)C14—C151.404 (3)
C2—C31.384 (3)C15—C161.398 (2)
C2—H2A0.9300C15—H15A0.9300
C3—C41.391 (2)C16—C171.390 (2)
C3—H3A0.9300C16—H16A0.9300
C4—C51.383 (2)C17—C181.388 (3)
C4—H4A0.9300C17—H17A0.9300
C5—C61.400 (2)C18—C191.379 (2)
C5—H5A0.9300C18—H18A0.9300
C6—C71.449 (2)C19—H19A0.9300
C7—H7A0.9300
C1—O1—H1O1106.4 (15)C9—C10—H10A119.9
C7—N1—C8121.88 (13)C10—C11—C12119.47 (15)
N3A—N2A—C11113.87 (16)C10—C11—N2A113.52 (16)
N2A—N3A—C14112.55 (17)C12—C11—N2A127.01 (16)
N3B—N2B—C1194.1 (9)C10—C11—N2B152.5 (4)
N2B—N3B—C1493.0 (9)C12—C11—N2B88.0 (4)
O1—C1—C2118.98 (14)N2A—C11—N2B39.1 (4)
O1—C1—C6121.03 (14)C13—C12—C11120.14 (15)
C2—C1—C6119.99 (15)C13—C12—H12A119.9
C3—C2—C1119.58 (15)C11—C12—H12A119.9
C3—C2—H2A120.2C12—C13—C8120.20 (16)
C1—C2—H2A120.2C12—C13—H13A119.9
C2—C3—C4121.16 (15)C8—C13—H13A119.9
C2—C3—H3A119.4C19—C14—C15120.13 (16)
C4—C3—H3A119.4C19—C14—N3A114.16 (16)
C5—C4—C3119.28 (16)C15—C14—N3A125.71 (17)
C5—C4—H4A120.4C19—C14—N3B155.6 (5)
C3—C4—H4A120.4C15—C14—N3B84.2 (4)
C4—C5—C6121.14 (15)N3A—C14—N3B41.5 (4)
C4—C5—H5A119.4C16—C15—C14119.43 (17)
C6—C5—H5A119.4C16—C15—H15A120.3
C5—C6—C1118.81 (14)C14—C15—H15A120.3
C5—C6—C7119.53 (14)C17—C16—C15119.70 (17)
C1—C6—C7121.66 (14)C17—C16—H16A120.2
N1—C7—C6121.13 (14)C15—C16—H16A120.2
N1—C7—H7A119.4C18—C17—C16120.02 (16)
C6—C7—H7A119.4C18—C17—H17A120.0
C9—C8—C13118.75 (14)C16—C17—H17A120.0
C9—C8—N1116.01 (14)C19—C18—C17120.46 (17)
C13—C8—N1125.24 (14)C19—C18—H18A119.8
C10—C9—C8121.15 (15)C17—C18—H18A119.8
C10—C9—H9A119.4C14—C19—C18120.25 (17)
C8—C9—H9A119.4C14—C19—H19A119.9
C11—C10—C9120.29 (16)C18—C19—H19A119.9
C11—C10—H10A119.9
C11—N2A—N3A—C14179.52 (13)N3A—N2A—C11—N2B0.3 (6)
C11—N2B—N3B—C14179.1 (5)N3B—N2B—C11—C103.7 (14)
O1—C1—C2—C3179.29 (16)N3B—N2B—C11—C12178.6 (7)
C6—C1—C2—C30.0 (3)N3B—N2B—C11—N2A0.4 (5)
C1—C2—C3—C41.3 (3)C10—C11—C12—C130.2 (3)
C2—C3—C4—C51.4 (3)N2A—C11—C12—C13179.56 (16)
C3—C4—C5—C60.2 (3)N2B—C11—C12—C13179.0 (4)
C4—C5—C6—C11.1 (2)C11—C12—C13—C80.1 (2)
C4—C5—C6—C7178.82 (15)C9—C8—C13—C120.6 (2)
O1—C1—C6—C5178.15 (15)N1—C8—C13—C12179.81 (14)
C2—C1—C6—C51.2 (2)N2A—N3A—C14—C19179.48 (15)
O1—C1—C6—C72.0 (2)N2A—N3A—C14—C150.2 (3)
C2—C1—C6—C7178.71 (15)N2A—N3A—C14—N3B0.7 (6)
C8—N1—C7—C6179.47 (13)N2B—N3B—C14—C192.8 (15)
C5—C6—C7—N1178.11 (15)N2B—N3B—C14—C15179.1 (8)
C1—C6—C7—N11.8 (2)N2B—N3B—C14—N3A0.1 (5)
C7—N1—C8—C9174.95 (15)C19—C14—C15—C160.8 (3)
C7—N1—C8—C135.8 (2)N3A—C14—C15—C16179.45 (16)
C13—C8—C9—C100.9 (2)N3B—C14—C15—C16179.9 (4)
N1—C8—C9—C10179.83 (14)C14—C15—C16—C170.1 (3)
C8—C9—C10—C110.6 (3)C15—C16—C17—C180.8 (3)
C9—C10—C11—C120.0 (3)C16—C17—C18—C190.6 (3)
C9—C10—C11—N2A179.87 (15)C15—C14—C19—C181.0 (3)
C9—C10—C11—N2B177.3 (9)N3A—C14—C19—C18179.21 (15)
N3A—N2A—C11—C10178.25 (15)N3B—C14—C19—C18178.8 (10)
N3A—N2A—C11—C121.9 (3)C17—C18—C19—C140.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N11.01 (3)1.66 (2)2.5853 (18)150 (2)
C5—H5A···O1i0.932.593.386 (2)144
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H15N3O
Mr301.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)26.0537 (10), 4.5475 (2), 12.0423 (4)
β (°) 90.600 (2)
V3)1426.68 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.52 × 0.20 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.955, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
35506, 4662, 3356
Rint0.053
(sin θ/λ)max1)0.733
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.212, 1.08
No. of reflections4662
No. of parameters220
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.53

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N11.01 (3)1.66 (2)2.5853 (18)150 (2)
C5—H5A···O1i0.93002.59003.386 (2)144.00
Symmetry code: (i) x, y1/2, z+1/2.
 

Footnotes

Additional correspondance author, e-mail: zsrkk@yahoo.com. First post-doctoral position: Chemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK.

Acknowledgements

HKF and RK thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia and the University of Bath for the award of post-doctoral research fellowships.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, N. A., Allen, N. S. & McKellar, J. F. (1980). Photochemistry of Dyed and Pigmented Polymers, pp. 93–159. London: Elsevier.  Google Scholar
First citationFlamingi, L. & Monti, S. (1985). J. Phys. Chem. 89, 3702–3707.  CrossRef Web of Science Google Scholar
First citationGriffiths, J. & Allen, N. S. (1980). Developments in Polymer Photochemistry, Vol. 1, pp. 145–189. London: Applied Science Publishers.  Google Scholar
First citationIkeda, T. & Tsutsumi, O. (1995). Science, 268, 1873–1875.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLeaver, I. H., Allen, N. S. & McKellar, J. F. (1980). Photochemistry of Dyed and Pigmented Polymers, pp. 161–245. London: Elsevier.  Google Scholar
First citationLiu, Z. F., Hashimoto, K. & Fujishima, A. (1990). Nature (London), 347, 658–660.  CrossRef CAS Web of Science Google Scholar
First citationRevannasiddaiah, D., Lokanath, N. K., Sridhar, M. A., Prasad, J. S. & Gowda, D. K. (1997). Z. Kristallogr. 212, 387–388.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVani, G. V. & Vijayan, K. (1977). Acta Cryst. B33, 2236–2240.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1856-o1857
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds