organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′,5,5′-Tetra­methyl-2,2′-[1,1′-(propane-1,3-diyldi­nitrilo)di­ethyl­­idyne]diphenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 23 August 2008; accepted 23 August 2008; online 30 August 2008)

The title Schiff base compound, C23H30N2O2, has crystallographic twofold rotation symmetry. An intra­molecular O—H⋯N hydrogen bond forms a six-membered ring, producing an S(6) ring motif. The imino group is coplanar with the benzene ring. The two benzene rings are almost perpendicular to each other, making a dihedral angle of 87.38 (4)°. In the crystal structure, neighbouring mol­ecules are linked along the c axis by weak inter­molecular C—H⋯O hydrogen bonds and are further packed into columns along the b axis, forming sheets which are parallel to the bc plane.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For information on Schiff base ligands and complexes and their applications, see, for example: Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]); Fun & Kia (2008a[Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081-m1082.],b[Fun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, m1116-m1117.],c[Fun, H.-K. & Kia, R. (2008c). Acta Cryst. E64, o1657-o1658.]); Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]); Casellato & Vigato (1977[Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31-50.]); For a similar structure, see: Fun & Kia (2008a[Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081-m1082.]).

[Scheme 1]

Experimental

Crystal data
  • C23H30N2O2

  • Mr = 366.49

  • Monoclinic, C 2/c

  • a = 28.6398 (12) Å

  • b = 5.1264 (2) Å

  • c = 13.3856 (5) Å

  • β = 102.090 (5)°

  • V = 1921.67 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100.0 (1) K

  • 0.52 × 0.18 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.997

  • 22388 measured reflections

  • 2955 independent reflections

  • 2125 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.163

  • S = 1.09

  • 2955 reflections

  • 134 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.94 (3) 1.63 (2) 2.5237 (17) 157 (2)
C12—H12C⋯O1i 0.96 2.57 3.466 (2) 156
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The condensation of primary amines with carbonyl compounds yields Schiff base (Casellato & Vigato, 1977) that are still now regarded as one of the most potential group of chelators for facile preparations of metallo-organic hybrid materials. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest for their noteworthy contributions in single molecule-based magnetism, materials science, catalysis of many reactions like carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis (Casellato & Vigato, 1977). Only a relatively small number of free Schiff base ligands have been characterized (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia, 2008; Fun, Kia & Kargar, 2008; Fun & Kia, 2008a,b,c) on the structural characterization of Schiff base ligands and their complexes, the title compound (I), is reported here.

The molecule of the title compound, (I), has a crystallographic twofold rotation symmetry (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al., 1987) and is comparable to its related structure (Fun & Kia 2008c). The asymmetric unit of the compound is composed of one-half of the molecule. An intramolecular O—H···N hydrogen bond forms a six-membered ring, producing a S(6) ring motif (Bernstein et al., 1995). The imino group is coplanar with the benzene ring. The two benzene rings are almost perpendicular to each other with a dihedral angle of 87.38 (4)°. In the crystal structure, neighbouring molecules are linked together along the c-axis by weak intermolecular C—H···O hydrogen bonds and are further packed into columns along the b axis, forming sheets which are parallel to the bc plane(Fig. 2, Fig. 3 and Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands and complexes and their applications, see, for example: Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008); Fun & Kia (2008a,b,c); Calligaris & Randaccio (1987); Casellato & Vigato (1977); For a similar structure, see, Fun & Kia (2008a).

Experimental top

The synthetic method has been described earlier (Fun & Kia et al., 2008c). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

H atom bound to O1 was located from the difference Fourier map and refined freely. The H atom bound to C9 was located from the difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H)= 1.2 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. The suffix A corresponds to symmetry code (-x + 1, y, -z + 3/2). Intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b-axis showing chains along the c-axis and stacking of these chains along the b-axis. Intramolecular and intermolecular interactions are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing of (I), viewed down the c-axis. Intermolecular interaction are shown as dashed lines.
4,4',5,5'-Tetramethyl-2,2'-[1,1'-(propane-1,3- diyldinitrilo)diethylidyne]diphenol top
Crystal data top
C23H30N2O2F(000) = 792
Mr = 366.49Dx = 1.263 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2732 reflections
a = 28.6398 (12) Åθ = 3.1–31.1°
b = 5.1264 (2) ŵ = 0.08 mm1
c = 13.3856 (5) ÅT = 100 K
β = 102.090 (5)°Plate, yellow
V = 1921.67 (13) Å30.52 × 0.18 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2955 independent reflections
Radiation source: fine-focus sealed tube2125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 30.6°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 4040
Tmin = 0.959, Tmax = 0.997k = 67
22388 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0692P)2 + 1.4537P]
where P = (Fo2 + 2Fc2)/3
2955 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H30N2O2V = 1921.67 (13) Å3
Mr = 366.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.6398 (12) ŵ = 0.08 mm1
b = 5.1264 (2) ÅT = 100 K
c = 13.3856 (5) Å0.52 × 0.18 × 0.04 mm
β = 102.090 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2955 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2125 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.997Rint = 0.065
22388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.43 e Å3
2955 reflectionsΔρmin = 0.23 e Å3
134 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39432 (4)0.1912 (2)0.79198 (8)0.0228 (3)
N10.44358 (4)0.3691 (2)0.67166 (9)0.0198 (3)
C10.37375 (5)0.0311 (3)0.71524 (10)0.0186 (3)
C20.33866 (5)0.1421 (3)0.73211 (11)0.0202 (3)
H2A0.33050.14390.79580.024*
C30.31557 (5)0.3111 (3)0.65766 (11)0.0196 (3)
C40.32783 (5)0.3098 (3)0.56081 (11)0.0201 (3)
C50.36250 (5)0.1379 (3)0.54410 (11)0.0195 (3)
H5A0.37050.13760.48030.023*
C60.38627 (5)0.0367 (3)0.61851 (10)0.0184 (3)
C70.42271 (5)0.2204 (3)0.59795 (11)0.0193 (3)
C80.48072 (5)0.5502 (3)0.65557 (11)0.0220 (3)
H8A0.46770.66540.59910.026*
H8B0.50670.45240.63730.026*
C90.50000.7123 (4)0.75000.0228 (4)
C100.27787 (5)0.4945 (3)0.67857 (12)0.0248 (3)
H10A0.27210.46100.74550.037*
H10B0.28850.67120.67500.037*
H10C0.24890.46860.62850.037*
C110.30396 (6)0.4918 (3)0.47727 (12)0.0261 (3)
H11A0.31770.46840.41830.039*
H11B0.27040.45420.45970.039*
H11C0.30860.66880.50060.039*
C120.43456 (6)0.2315 (4)0.49364 (12)0.0292 (4)
H12A0.46860.23250.50050.044*
H12B0.42130.38730.45920.044*
H12C0.42130.08180.45470.044*
H1O10.4165 (8)0.284 (5)0.7632 (17)0.052 (6)*
H90.5269 (6)0.827 (4)0.7343 (13)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (6)0.0245 (6)0.0186 (5)0.0057 (4)0.0047 (4)0.0014 (4)
N10.0172 (6)0.0191 (6)0.0228 (6)0.0000 (5)0.0038 (5)0.0027 (5)
C10.0181 (6)0.0182 (7)0.0184 (6)0.0019 (5)0.0014 (5)0.0010 (5)
C20.0209 (7)0.0211 (7)0.0190 (7)0.0013 (6)0.0053 (5)0.0021 (6)
C30.0177 (6)0.0157 (7)0.0246 (7)0.0013 (5)0.0028 (5)0.0027 (6)
C40.0184 (6)0.0173 (7)0.0230 (7)0.0025 (5)0.0008 (5)0.0001 (6)
C50.0208 (7)0.0197 (7)0.0177 (6)0.0036 (6)0.0031 (5)0.0005 (5)
C60.0171 (6)0.0193 (7)0.0185 (6)0.0011 (5)0.0034 (5)0.0022 (5)
C70.0184 (6)0.0195 (7)0.0199 (7)0.0016 (5)0.0035 (5)0.0031 (5)
C80.0200 (7)0.0212 (7)0.0249 (7)0.0008 (6)0.0050 (6)0.0037 (6)
C90.0192 (10)0.0193 (11)0.0297 (11)0.0000.0045 (8)0.000
C100.0220 (7)0.0207 (8)0.0314 (8)0.0012 (6)0.0050 (6)0.0022 (6)
C110.0266 (8)0.0222 (8)0.0271 (8)0.0004 (6)0.0001 (6)0.0037 (6)
C120.0312 (8)0.0347 (9)0.0232 (7)0.0063 (7)0.0094 (6)0.0001 (7)
Geometric parameters (Å, º) top
O1—C11.3497 (17)C7—C121.505 (2)
O1—H1O10.94 (2)C8—C91.5169 (19)
N1—C71.2904 (19)C8—H8A0.9700
N1—C81.4613 (18)C8—H8B0.9700
C1—C21.395 (2)C9—C8i1.5169 (19)
C1—C61.4143 (19)C9—H91.025 (18)
C2—C31.380 (2)C10—H10A0.9600
C2—H2A0.9300C10—H10B0.9600
C3—C41.412 (2)C10—H10C0.9600
C3—C101.501 (2)C11—H11A0.9600
C4—C51.380 (2)C11—H11B0.9600
C4—C111.506 (2)C11—H11C0.9600
C5—C61.404 (2)C12—H12A0.9600
C5—H5A0.9300C12—H12B0.9600
C6—C71.474 (2)C12—H12C0.9600
C1—O1—H1O1102.7 (14)C9—C8—H8A109.2
C7—N1—C8119.85 (12)N1—C8—H8B109.2
O1—C1—C2118.58 (12)C9—C8—H8B109.2
O1—C1—C6122.04 (13)H8A—C8—H8B107.9
C2—C1—C6119.38 (13)C8—C9—C8i113.56 (18)
C3—C2—C1122.37 (13)C8—C9—H9107.5 (10)
C3—C2—H2A118.8C8i—C9—H9109.0 (10)
C1—C2—H2A118.8C3—C10—H10A109.5
C2—C3—C4119.08 (13)C3—C10—H10B109.5
C2—C3—C10120.86 (13)H10A—C10—H10B109.5
C4—C3—C10120.06 (13)C3—C10—H10C109.5
C5—C4—C3118.52 (13)H10A—C10—H10C109.5
C5—C4—C11120.34 (13)H10B—C10—H10C109.5
C3—C4—C11121.14 (13)C4—C11—H11A109.5
C4—C5—C6123.38 (13)C4—C11—H11B109.5
C4—C5—H5A118.3H11A—C11—H11B109.5
C6—C5—H5A118.3C4—C11—H11C109.5
C5—C6—C1117.27 (13)H11A—C11—H11C109.5
C5—C6—C7122.12 (12)H11B—C11—H11C109.5
C1—C6—C7120.61 (13)C7—C12—H12A109.5
N1—C7—C6117.88 (12)C7—C12—H12B109.5
N1—C7—C12121.89 (13)H12A—C12—H12B109.5
C6—C7—C12120.22 (13)C7—C12—H12C109.5
N1—C8—C9111.98 (11)H12A—C12—H12C109.5
N1—C8—H8A109.2H12B—C12—H12C109.5
O1—C1—C2—C3179.52 (13)O1—C1—C6—C5179.81 (13)
C6—C1—C2—C30.3 (2)C2—C1—C6—C50.6 (2)
C1—C2—C3—C40.1 (2)O1—C1—C6—C70.1 (2)
C1—C2—C3—C10179.85 (13)C2—C1—C6—C7179.09 (13)
C2—C3—C4—C50.2 (2)C8—N1—C7—C6178.61 (12)
C10—C3—C4—C5179.74 (13)C8—N1—C7—C121.6 (2)
C2—C3—C4—C11179.51 (13)C5—C6—C7—N1178.28 (13)
C10—C3—C4—C110.5 (2)C1—C6—C7—N12.0 (2)
C3—C4—C5—C60.1 (2)C5—C6—C7—C121.9 (2)
C11—C4—C5—C6179.86 (13)C1—C6—C7—C12177.83 (14)
C4—C5—C6—C10.5 (2)C7—N1—C8—C9178.56 (13)
C4—C5—C6—C7179.19 (13)N1—C8—C9—C8i56.33 (9)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.94 (3)1.63 (2)2.5237 (17)157 (2)
C12—H12C···O1ii0.962.573.466 (2)156
Symmetry code: (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC23H30N2O2
Mr366.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)28.6398 (12), 5.1264 (2), 13.3856 (5)
β (°) 102.090 (5)
V3)1921.67 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.52 × 0.18 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.959, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
22388, 2955, 2125
Rint0.065
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.163, 1.09
No. of reflections2955
No. of parameters134
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.94 (3)1.63 (2)2.5237 (17)157 (2)
C12—H12C···O1i0.96002.57003.466 (2)156.00
Symmetry code: (i) x, y, z1/2.
 

Footnotes

Additional correspondance author: e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship. CSY thanks Universiti Sains Malaysia for the award of a student assistantship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationCasellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31–50.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081–m1082.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, m1116–m1117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008c). Acta Cryst. E64, o1657–o1658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds