organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl N′-[1-(4-hy­droxy­phen­yl)ethyl­­idene]hydrazine­carboxyl­ate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 28 July 2008; accepted 30 July 2008; online 6 August 2008)

The title compound, C10H12N2O3, adopts a trans configuration with respect to the C=N bond. The dihedral angle between the benzene ring and the hydrazine carboxylic acid plane is 8.29 (7)°. Mol­ecules are linked into a three-dimensional network by N—H⋯O, O—H⋯O, O—H⋯N hydrogen bonds and C—H⋯π inter­actions.

Related literature

For general background, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For related structures, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O3

  • Mr = 208.22

  • Orthorhombic, P b c a

  • a = 11.2532 (18) Å

  • b = 10.4310 (17) Å

  • c = 17.226 (3) Å

  • V = 2022.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.31 × 0.27 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.978

  • 12287 measured reflections

  • 1794 independent reflections

  • 1626 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.098

  • S = 1.09

  • 1794 reflections

  • 140 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O21i 0.82 2.61 3.0523 (14) 116
O1—H1⋯N1i 0.82 2.03 2.8464 (14) 174
N2—H2A⋯O2ii 0.86 2.44 3.2777 (16) 164
C10—H10BCg1iii 0.96 2.90 3.7169 (19) 144
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]. Cg1 is the centroid of the C1–C6 ring.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attentions for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties(Hadjoudis et al., 1987). Meanwhile, it is an important intermediate of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with interesting properties (Borg et al., 1999). As a further investigation of this type of derivatives, the crystal structure of the title compound, C10H12N2O3(Fig.1), is described here.

The title molecule (Fig.1) adopts a trans configuration with respect to the CN bond. The N1/N2/O2/O3/C9/C10 plane of the hydrazine carboxylic acid methyl ester group is slightly twisted away from the attached ring, to which it subtends a dihedral angle of 8.29 (7)°. Bond lengths and angles agree with those observed for methyl N'-[(E)-4-methoxybenzylidene] hydrazinecarboxylate (Shang et al., 2007).

The molecules are linked into a three-dimensional network by N–H···O, O–H···O, O–H···N hydrogen bonds and C–H···π interactions. (Table 1).

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al., (1999). For related structures, see: Shang et al. (2007). Cg1 is the centroid of the C1–C6 ring.

Experimental top

4-Hydroxy-acetophenone (1.36 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 4 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 80% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 483–485 K).

Refinement top

H atoms were included in the riding model approximation with N—H = 0.86Å and O—H =0.82 Å. C-bound H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
(E)-Methyl N'-[1-(4-hydroxyphenyl)ethylidene]hydrazinecarboxylate top
Crystal data top
C10H12N2O3F(000) = 880
Mr = 208.22Dx = 1.368 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1794 reflections
a = 11.2532 (18) Åθ = 2.4–25.0°
b = 10.4310 (17) ŵ = 0.10 mm1
c = 17.226 (3) ÅT = 273 K
V = 2022.1 (6) Å3Block, colourless
Z = 80.31 × 0.27 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1794 independent reflections
Radiation source: fine-focus sealed tube1626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1310
Tmin = 0.972, Tmax = 0.978k = 1212
12287 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.6007P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1794 reflectionsΔρmax = 0.17 e Å3
140 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (8)
Crystal data top
C10H12N2O3V = 2022.1 (6) Å3
Mr = 208.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.2532 (18) ŵ = 0.10 mm1
b = 10.4310 (17) ÅT = 273 K
c = 17.226 (3) Å0.31 × 0.27 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1794 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1626 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.978Rint = 0.016
12287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
1794 reflectionsΔρmin = 0.15 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54458 (12)0.13035 (13)0.82724 (8)0.0330 (3)
H30.49760.18060.85960.040*
C70.47041 (11)0.06505 (12)0.89717 (7)0.0287 (3)
C50.61590 (11)0.07467 (13)0.78629 (8)0.0329 (3)
H50.61770.16340.79130.039*
C90.22859 (11)0.01890 (13)1.01445 (7)0.0332 (3)
C30.68423 (11)0.11609 (13)0.72183 (7)0.0294 (3)
C20.61307 (12)0.18868 (13)0.77120 (8)0.0339 (3)
H20.61180.27750.76630.041*
C60.54416 (11)0.00311 (12)0.83650 (7)0.0283 (3)
C40.68424 (12)0.01681 (13)0.72942 (7)0.0328 (3)
H40.73020.06670.69630.039*
C80.50358 (13)0.19457 (13)0.92764 (8)0.0366 (3)
H8A0.50240.19320.98340.055*
H8B0.58190.21660.91000.055*
H8C0.44770.25710.90910.055*
N20.30927 (11)0.05735 (10)0.97785 (7)0.0348 (3)
H2A0.31640.13720.98950.042*
N10.37946 (9)0.00106 (10)0.92106 (6)0.0299 (3)
O10.74919 (9)0.18049 (9)0.66825 (5)0.0381 (3)
H10.78280.12910.63970.057*
O30.16440 (10)0.05274 (10)1.06350 (6)0.0471 (3)
O20.21727 (9)0.13304 (9)1.00534 (6)0.0433 (3)
C100.07785 (16)0.01597 (17)1.10905 (10)0.0540 (5)
H10A0.11080.09651.12530.081*
H10B0.05710.03391.15390.081*
H10C0.00810.03101.07830.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0343 (7)0.0289 (7)0.0359 (7)0.0019 (6)0.0053 (6)0.0057 (5)
C70.0261 (6)0.0289 (7)0.0309 (7)0.0016 (5)0.0063 (5)0.0016 (5)
C50.0315 (7)0.0245 (7)0.0426 (8)0.0020 (5)0.0003 (6)0.0014 (5)
C90.0302 (7)0.0359 (8)0.0334 (7)0.0036 (6)0.0026 (5)0.0005 (6)
C30.0268 (6)0.0316 (7)0.0298 (6)0.0015 (5)0.0012 (5)0.0024 (5)
C20.0390 (8)0.0238 (6)0.0390 (7)0.0006 (5)0.0041 (6)0.0025 (5)
C60.0249 (6)0.0286 (7)0.0315 (7)0.0005 (5)0.0036 (5)0.0013 (5)
C40.0309 (7)0.0300 (7)0.0374 (7)0.0043 (6)0.0039 (5)0.0051 (5)
C80.0345 (7)0.0321 (7)0.0432 (8)0.0003 (6)0.0006 (6)0.0048 (6)
N20.0366 (7)0.0293 (6)0.0383 (6)0.0002 (5)0.0056 (5)0.0042 (5)
N10.0290 (6)0.0319 (6)0.0289 (6)0.0010 (5)0.0005 (4)0.0029 (4)
O10.0434 (6)0.0314 (5)0.0396 (5)0.0003 (4)0.0132 (4)0.0021 (4)
O30.0500 (7)0.0373 (6)0.0541 (6)0.0066 (5)0.0232 (5)0.0039 (5)
O20.0437 (6)0.0358 (6)0.0505 (6)0.0056 (5)0.0053 (5)0.0056 (5)
C100.0557 (10)0.0507 (10)0.0558 (10)0.0061 (8)0.0227 (8)0.0134 (8)
Geometric parameters (Å, º) top
C1—C21.3770 (19)C3—C41.3924 (19)
C1—C61.4012 (19)C2—H20.9300
C1—H30.9300C4—H40.9300
C7—N11.2894 (17)C8—H8A0.9600
C7—C61.4827 (18)C8—H8B0.9600
C7—C81.4967 (18)C8—H8C0.9600
C5—C41.3840 (19)N2—N11.3877 (15)
C5—C61.3990 (18)N2—H2A0.8600
C5—H50.9300O1—H10.8200
C9—O21.2076 (17)O3—C101.4416 (18)
C9—O31.3394 (16)C10—H10A0.9600
C9—N21.3618 (18)C10—H10B0.9600
C3—O11.3556 (16)C10—H10C0.9600
C3—C21.3920 (18)
C2—C1—C6121.38 (12)C5—C4—C3120.04 (12)
C2—C1—H3119.3C5—C4—H4120.0
C6—C1—H3119.3C3—C4—H4120.0
N1—C7—C6116.34 (11)C7—C8—H8A109.5
N1—C7—C8123.60 (12)C7—C8—H8B109.5
C6—C7—C8120.07 (11)H8A—C8—H8B109.5
C4—C5—C6121.71 (12)C7—C8—H8C109.5
C4—C5—H5119.1H8A—C8—H8C109.5
C6—C5—H5119.1H8B—C8—H8C109.5
O2—C9—O3125.11 (12)C9—N2—N1117.31 (11)
O2—C9—N2125.88 (12)C9—N2—H2A121.3
O3—C9—N2109.01 (12)N1—N2—H2A121.3
O1—C3—C2117.17 (12)C7—N1—N2117.25 (11)
O1—C3—C4123.86 (11)C3—O1—H1109.5
C2—C3—C4118.96 (12)C9—O3—C10115.49 (12)
C1—C2—C3120.66 (12)O3—C10—H10A109.5
C1—C2—H2119.7O3—C10—H10B109.5
C3—C2—H2119.7H10A—C10—H10B109.5
C5—C6—C1117.25 (12)O3—C10—H10C109.5
C5—C6—C7121.75 (12)H10A—C10—H10C109.5
C1—C6—C7121.01 (11)H10B—C10—H10C109.5
C6—C1—C2—C30.0 (2)C6—C5—C4—C31.0 (2)
O1—C3—C2—C1179.91 (12)O1—C3—C4—C5179.43 (12)
C4—C3—C2—C10.66 (19)C2—C3—C4—C51.17 (19)
C4—C5—C6—C10.33 (18)O2—C9—N2—N14.8 (2)
C4—C5—C6—C7179.66 (12)O3—C9—N2—N1176.23 (11)
C2—C1—C6—C50.20 (19)C6—C7—N1—N2179.99 (10)
C2—C1—C6—C7179.81 (12)C8—C7—N1—N20.36 (18)
N1—C7—C6—C5156.37 (12)C9—N2—N1—C7166.88 (11)
C8—C7—C6—C523.98 (18)O2—C9—O3—C101.4 (2)
N1—C7—C6—C123.61 (17)N2—C9—O3—C10177.62 (12)
C8—C7—C6—C1156.03 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.613.0523 (14)116
O1—H1···N1i0.822.032.8464 (14)174
N2—H2A···O2ii0.862.443.2777 (16)164
C10—H10B···Cg1iii0.962.903.7169 (19)144
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y1/2, z; (iii) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2O3
Mr208.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)11.2532 (18), 10.4310 (17), 17.226 (3)
V3)2022.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.31 × 0.27 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.972, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
12287, 1794, 1626
Rint0.016
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.098, 1.09
No. of reflections1794
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.613.0523 (14)115.8
O1—H1···N1i0.822.032.8464 (14)173.5
N2—H2A···O2ii0.862.443.2777 (16)164.1
C10—H10B···Cg1iii0.962.903.7169 (19)144.0
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y1/2, z; (iii) x+3/2, y, z1/2.
 

Acknowledgements

The authors acknowledge financial support from Hangzhou Vocational and Technical College, China.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds