metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1139-m1140

catena-Poly[[tetra­kis(μ2-acetato-κ2O:O′)dicopper(II)(CuCu)]-μ2-acetato-κ2O:O′-[bis­­[μ2-3-(di­methyl­amino)propan-1-olato]-κ2N,O:O;κ2O:N,O-bis­­[(tetra­hydro­furan-κO)copper(II)]]-μ2-acetato-κ2O:O′]

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bThe School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, England
*Correspondence e-mail: mazhar42pk@yahoo.com

(Received 18 June 2008; accepted 29 July 2008; online 9 August 2008)

The title complex, [Cu4(C5H12NO)2(C2H3O2)6(C4H8O)2]n, consists of dinuclear [Cu2(C5H12NO)2(THF)2] (THF is tetra­hydro­furan) and [Cu2(CH3COO)4] units linked through acetate ions, generating parallel one-dimensional polymeric chains propagating in the [1[\overline{1}]0] direction. In the first dinuclear unit, CuII ions related by inversion symmetry are bridged by two 3-(dimethyl­amino)propan-1-olate ligands. Likewise, a pair of inversion-related CuII ions are bridged by four acetate groups. The crystallographically independent Cu centers are linked to one another by a single bridging acetate group, generating an infinite chain. The distorted square-pyramidal coordination of the first metal center is completed with an apical THF mol­ecule, with a long Cu—O bond length of 2.476 (5) Å. The geometry around the other metal atom is close to octa­hedral, and the Cu⋯Cu separation in this unit is 2.652 (1) Å. The distance between the metal centers in the first dinuclear unit is considerably longer [3.068 (1) Å], suggesting little or no bonding inter­action. The Cu⋯Cu separation between two acetate-bridged independent Cu centers is 4.860 (2) Å. The THF mol­ecule has methyl­ene groups disordered over two positions, with occupancies of 0.608 (13) and 0.392 (13).

Related literature

For related literature, see: Catania et al. (1990[Catania, P., Hovnanian, N., Cot, L., Pham Thi, M., Kormann, R. & Ganne, J. P. (1990). Mater. Res. Bull. 25, 631-642.]); El Fallah et al. (2004[El Fallah, M. S., Escuer, A., Vicente, R., Badyine, F., Solans, X. & Font-Bardia, M. (2004). Inorg. Chem. 43, 7218-7226.]); Li et al. (1994[Li, J., Seidel, T. E. & Mayer, J. W. (1994). MRS Bull. 19, 15-22.]); Mazhar et al. (2006[Mazhar, M., Hussain, S. M., Rabbani, F., Kociok-Köhn, G. & Molloy, K. C. (2006). Bull. Korean Chem. Soc. 27, 1572-1576.]); Tahir et al. (2007[Tahir, A. A., Hamid, M., Mazhar, M. & Molloy, K. C. (2007). Acta Cryst. E63, m1243-m1245.]); Torres et al. (1996[Torres, J., Mermet, J. L., Madar, R., Crean, G., Gessner, T., Bertz, A., Hasse, W., Plotner, M., Binder, F. & Save, D. (1996). Microelectron. Eng. 34, 119-122.]); Wang et al. (1993[Wang, S., Pang, Z., Zheng, J. C. & Wagner, M. J. (1993). Inorg. Chem. 32, 5975-5980.]); Zhang et al. (2004[Zhang, Y.-L., Chen, S.-W., Liu, W.-S. & Wang, D.-Q. (2004). Acta Cryst. E60, m196-m197.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4(C5H12NO)2(C2H3O2)6(C4H8O)2]

  • Mr = 956.94

  • Monoclinic, C 2/c

  • a = 25.686 (5) Å

  • b = 8.972 (5) Å

  • c = 18.021 (5) Å

  • β = 105.782 (5)°

  • V = 3996 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 100 (2) K

  • 0.23 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 15315 measured reflections

  • 4093 independent reflections

  • 3300 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.156

  • S = 1.22

  • 4093 reflections

  • 268 parameters

  • 167 restraints

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For the last two decades, there has been a considerable interest in the investigation of CuII complexes using carboxylate and aminoalcohol as ligands (Wang et al., 1993; El Fallah et al., 2004; Tahir et al., 2007; Mazhar et al., 2006) due to their potential use as CVD precursors for the deposition of copper and copper(II) oxide with diverse applications. For example, copper oxide is a component of high Tc superconductors (Catania et al., 1990). Being an excellent electrical conductor and good resistor for electromigration, metallic copper may replace aluminum alloys for multi-level metallization applications in Ultra Large Scale Integration (ULSI) technology (Torres et al., 1996; Li et al., 1994).

Herein, we report, the structure of a new polymeric CuII complex, (I), in which the molecules are linked into parallel, one dimensional polymeric chains in the [1 -1 0] direction, through acetate and 3-dimethylaminopropan-1-olate (dmap) bridging ligands, with tetrahydrofuran (THF) as an ancillary ligand.

In the title compound (Fig. 1), the environment of Cu1 is distorted square pyramidal, with the ligation set [CuO4N] consisting of O1, O1i [symmetry code: (i) 1/2-x, 1/2-y, 1-z] of two bridging-chelating dmap ligands, O2 of the bridging acetate group, O1S of the THF molecule and N1 of one bridging-chelating dmap ligand. The deviation from perfect square pyramidal geometry around Cu1 is evident from the O1—Cu1—O1i bite angle of 75.99 (18)° (less than 90°) and O1—Cu1—O2 angle, 167.93 (17)° [less than 180°]. Additionally, the Cu—O bond length of Cu1 to the apical O atom, O1S, is 2.476 (5) Å, longer than all other Cu—O bond lengths around Cu1, which are consistent with the sum of the ionic radii, 1.92 Å. The overall geometry around Cu2 is close to octahedral. The equatorial plane is formed by O4, O6, O5ii and O7ii of four bridging acetate groups connecting Cu2 and Cu2ii [symmetry code: (ii) 1-x, -y, 1-z] atoms of two monomers in the polymeric structure, while O atom O3 of the bridging acetate links Cu2 in the axial position in the octahedron. The trans angles in the equatorial plane deviate slightly from ideal value of 180°, and the Cu2—O3 bond length of 2.141 (4) Å is slightly longer than the normal value (1.92 Å), indicating slightly distorted coordination geometry around the Cu2 atom in the complex. All the Cu2—O bond distances in the equatorial plane are in agreement with the bond lengths found in similar complexes (Zhang et al., 2004). The inversion related Cu2 atoms are linked by Cu—Cu bonds of 2.652 (1) Å, completing the octahedral coordination of Cu2. The distance between the inversion related Cu1 atoms is considerably longer, 3.068 (1) Å, suggesting little or no bonding interaction, and the Cu1···Cu2 separation is 4.860 (2) Å.

Related literature top

For related literature, see: Catania et al. (1990); El Fallah et al. (2004); Li et al. (1994); Mazhar et al. (2006); Tahir et al. (2007); Torres et al. (1996); Wang et al. (1993); Zhang et al. (2004).

Experimental top

3-Dimethylamino-1-propanol (0.15 g, 1.25 mmol) was added to a stirred suspension of Cu(CH3COO)2.H2O (0.50 g, 2.50 mmol) in 25 ml of THF. After two hours of stirring, the mixture was vacuum evaporated to dryness and the resulting solid was redissolved in THF to give greenish blue block-shaped crystals, at room temperature, after 10 days.

Refinement top

Atoms C1S, C2S and C3S of the THF molecule are disordered over two sites with occupancies constrained to sum to unity, and the highest occupancy fraction refining to a value of 0.608 (13). Distance restraints were applied to the O—C and C—C bond lengths of the disordered THF using the SADI command and restraints were applied to the atomic displacement parameters of this molecule. H atoms were included in calculated positions using the riding model with C—H distances ranging from 0.96 to 0.97 Å and Ueq values 1.2 to 1.5 times those of the parent atoms; the methyl H atoms were calculated so as to maximize the sum of the electron density at the three calculated positions.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labeling scheme and displacement ellipsoids at the 50% probability level. H atoms and disordered atoms have been removed for clarity. Symmetry codes: A 1/2-x, 1/2-y, 1-z; B 1-x, -y, 1-z.
catena-Poly[[tetrakis(µ2-acetato- κ2O:O')dicopper(II)(Cu—Cu)]-µ2- acetato-κ2O:O'-[bis[µ2-3-(dimethylamino)propan-1-olato]- κ2N,O:O;κ2O:N,O- bis[(tetrahydrofuran-κO)copper(II)]]-µ2-acetato- κ2O:O'] top
Crystal data top
[Cu4(C5H12NO)2(C2H3O2)6(C4H8O)2]F(000) = 1984
Mr = 956.94Dx = 1.590 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 2913 reflections
a = 25.686 (5) Åθ = 2.4–26.4°
b = 8.972 (5) ŵ = 2.17 mm1
c = 18.021 (5) ÅT = 100 K
β = 105.782 (5)°Plate, blue
V = 3996 (3) Å30.23 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3300 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.093
Graphite monochromatorθmax = 26.4°, θmin = 2.4°
ϕ and ω scansh = 3232
15315 measured reflectionsk = 1111
4093 independent reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0593P)2 + 6.3428P]
where P = (Fo2 + 2Fc2)/3
4093 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 1.17 e Å3
167 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Cu4(C5H12NO)2(C2H3O2)6(C4H8O)2]V = 3996 (3) Å3
Mr = 956.94Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.686 (5) ŵ = 2.17 mm1
b = 8.972 (5) ÅT = 100 K
c = 18.021 (5) Å0.23 × 0.10 × 0.04 mm
β = 105.782 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3300 reflections with I > 2σ(I)
15315 measured reflectionsRint = 0.093
4093 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.075167 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.22Δρmax = 1.17 e Å3
4093 reflectionsΔρmin = 0.89 e Å3
268 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.30186 (3)0.30456 (8)0.55814 (4)0.0138 (2)
Cu20.45657 (3)0.02909 (8)0.52386 (4)0.0172 (2)
O10.25020 (14)0.3612 (4)0.4632 (2)0.0151 (8)
O20.35126 (14)0.2046 (5)0.6459 (2)0.0176 (9)
O30.38789 (15)0.0922 (5)0.5624 (2)0.0185 (9)
O40.48175 (19)0.1399 (6)0.5945 (3)0.0396 (13)
O50.55563 (17)0.1852 (5)0.5562 (2)0.0256 (10)
O60.42008 (17)0.1147 (6)0.4445 (3)0.0351 (12)
O70.49313 (17)0.1635 (5)0.4038 (3)0.0291 (11)
N10.35282 (19)0.4863 (5)0.5650 (3)0.0183 (11)
C10.3780 (3)0.5304 (8)0.6455 (4)0.0299 (15)
H1A0.40260.61140.64660.045*
H1B0.39730.44720.67340.045*
H1C0.35040.56140.66890.045*
C20.3966 (2)0.4443 (7)0.5296 (4)0.0238 (14)
H2A0.41810.53050.52650.036*
H2B0.38100.40570.47870.036*
H2C0.41910.36940.56060.036*
C30.3233 (2)0.6201 (7)0.5256 (4)0.0236 (14)
H3A0.34930.69940.52750.028*
H3B0.29850.65340.55420.028*
C40.2913 (2)0.5957 (7)0.4414 (4)0.0256 (15)
H4A0.28210.69190.41680.031*
H4B0.31410.54390.41480.031*
C50.2399 (2)0.5068 (7)0.4328 (4)0.0235 (14)
H5A0.21690.55860.45910.028*
H5B0.22060.50050.37860.028*
C60.3837 (2)0.1105 (7)0.6289 (3)0.0180 (13)
C70.4177 (3)0.0192 (8)0.6959 (4)0.0328 (17)
H7A0.41660.08390.68130.049*
H7B0.40350.02990.73970.049*
H7C0.45440.05400.70900.049*
C80.5252 (2)0.2083 (7)0.5982 (4)0.0209 (13)
C90.5405 (3)0.3270 (7)0.6589 (4)0.0319 (16)
H9A0.51550.40850.64560.048*
H9B0.53940.28660.70780.048*
H9C0.57640.36200.66230.048*
C100.4439 (2)0.1799 (7)0.4023 (4)0.0211 (13)
C110.4112 (3)0.2912 (7)0.3460 (4)0.0311 (16)
H11A0.39920.36940.37380.047*
H11B0.43320.33280.31580.047*
H11C0.38040.24240.31260.047*
O1S0.25794 (16)0.4312 (6)0.6472 (2)0.0302 (10)
C1S0.2630 (5)0.3409 (16)0.7175 (6)0.031 (2)0.608 (13)
H1S10.28110.39830.76280.037*0.608 (13)
H1S20.28430.25240.71590.037*0.608 (13)
C2S0.2070 (5)0.2968 (15)0.7220 (8)0.035 (2)0.608 (13)
H2S10.19530.20380.69520.042*0.608 (13)
H2S20.20540.28850.77500.042*0.608 (13)
C3S0.1749 (4)0.4257 (14)0.6819 (6)0.0286 (18)0.608 (13)
H3S10.17810.51080.71610.034*0.608 (13)
H3S20.13700.39980.66200.034*0.608 (13)
C4S0.2002 (2)0.4563 (8)0.6182 (4)0.0272 (12)0.608 (13)
H4S10.18510.39060.57490.033*0.608 (13)
H4S20.19330.55850.60070.033*0.608 (13)
C1T0.2742 (8)0.392 (3)0.7265 (8)0.034 (3)0.392 (13)
H1T10.27240.47530.75990.041*0.392 (13)
H1T20.30990.34740.74170.041*0.392 (13)
C2T0.2304 (7)0.281 (2)0.7224 (11)0.037 (3)0.392 (13)
H2T10.22300.27180.77220.044*0.392 (13)
H2T20.24100.18430.70750.044*0.392 (13)
C3T0.1812 (6)0.337 (2)0.6632 (9)0.030 (2)0.392 (13)
H3T10.15520.37680.68810.036*0.392 (13)
H3T20.16420.25600.62930.036*0.392 (13)
C4T0.2002 (2)0.4563 (8)0.6182 (4)0.0272 (12)0.392 (13)
H4T10.18740.44010.56300.033*0.392 (13)
H4T20.18990.55510.63070.033*0.392 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0061 (3)0.0192 (4)0.0153 (4)0.0016 (3)0.0012 (3)0.0012 (3)
Cu20.0079 (3)0.0222 (4)0.0218 (4)0.0048 (3)0.0045 (3)0.0020 (3)
O10.0100 (18)0.015 (2)0.017 (2)0.0006 (16)0.0010 (16)0.0048 (17)
O20.0077 (19)0.026 (2)0.017 (2)0.0038 (16)0.0001 (16)0.0036 (18)
O30.0070 (18)0.032 (3)0.016 (2)0.0028 (17)0.0023 (16)0.0001 (18)
O40.028 (3)0.043 (3)0.056 (3)0.021 (2)0.026 (3)0.028 (3)
O50.018 (2)0.035 (3)0.026 (2)0.0129 (19)0.0088 (19)0.008 (2)
O60.013 (2)0.044 (3)0.050 (3)0.006 (2)0.010 (2)0.022 (3)
O70.017 (2)0.045 (3)0.025 (2)0.003 (2)0.0047 (19)0.010 (2)
N10.012 (2)0.021 (3)0.024 (3)0.002 (2)0.007 (2)0.003 (2)
C10.025 (3)0.035 (4)0.024 (4)0.004 (3)0.004 (3)0.007 (3)
C20.013 (3)0.024 (4)0.037 (4)0.001 (2)0.011 (3)0.002 (3)
C30.014 (3)0.020 (3)0.035 (4)0.001 (2)0.002 (3)0.001 (3)
C40.016 (3)0.019 (3)0.039 (4)0.003 (2)0.002 (3)0.009 (3)
C50.013 (3)0.027 (4)0.028 (3)0.000 (2)0.001 (3)0.002 (3)
C60.007 (3)0.022 (3)0.023 (3)0.003 (2)0.000 (2)0.001 (3)
C70.027 (4)0.044 (4)0.027 (4)0.021 (3)0.007 (3)0.010 (3)
C80.018 (3)0.022 (3)0.020 (3)0.001 (2)0.001 (2)0.000 (3)
C90.027 (4)0.028 (4)0.042 (4)0.010 (3)0.012 (3)0.014 (3)
C100.018 (3)0.018 (3)0.025 (3)0.003 (2)0.003 (3)0.007 (3)
C110.030 (4)0.026 (4)0.033 (4)0.004 (3)0.001 (3)0.002 (3)
O1S0.0107 (18)0.057 (3)0.024 (2)0.0075 (19)0.0063 (17)0.003 (2)
C1S0.014 (4)0.055 (5)0.021 (4)0.011 (4)0.000 (3)0.002 (4)
C2S0.020 (4)0.049 (5)0.034 (4)0.005 (4)0.006 (4)0.010 (3)
C3S0.012 (3)0.042 (4)0.032 (4)0.002 (3)0.007 (3)0.002 (4)
C4S0.011 (2)0.041 (3)0.029 (2)0.008 (2)0.0047 (19)0.004 (2)
C1T0.015 (4)0.060 (6)0.023 (4)0.008 (4)0.002 (4)0.003 (5)
C2T0.025 (5)0.052 (5)0.030 (5)0.008 (5)0.001 (4)0.008 (4)
C3T0.015 (4)0.045 (5)0.030 (4)0.004 (4)0.006 (4)0.003 (4)
C4T0.011 (2)0.041 (3)0.029 (2)0.008 (2)0.0047 (19)0.004 (2)
Geometric parameters (Å, º) top
Cu1—O11.926 (4)C5—H5B0.9700
Cu1—O21.956 (4)C6—C71.522 (8)
Cu1—O1i1.967 (4)C7—H7A0.9600
Cu1—N12.074 (5)C7—H7B0.9600
Cu2—O61.965 (5)C7—H7C0.9600
Cu2—O41.972 (5)C8—C91.501 (8)
Cu2—O5ii1.974 (4)C9—H9A0.9600
Cu2—O7ii1.977 (4)C9—H9B0.9600
Cu2—O32.141 (4)C9—H9C0.9600
Cu2—Cu2ii2.6520 (14)C10—C111.506 (9)
O1—C51.414 (7)C11—H11A0.9600
O1—Cu1i1.967 (4)C11—H11B0.9600
O2—C61.280 (7)C11—H11C0.9600
O3—C61.243 (7)O1S—C1T1.420 (13)
O4—C81.260 (7)O1S—C4S1.449 (6)
O5—C81.244 (7)O1S—C1S1.480 (10)
O5—Cu2ii1.974 (4)C1S—C2S1.514 (12)
O6—C101.244 (7)C1S—H1S10.9700
O7—C101.265 (7)C1S—H1S20.9700
O7—Cu2ii1.977 (4)C2S—C3S1.489 (11)
N1—C11.473 (8)C2S—H2S10.9700
N1—C21.485 (7)C2S—H2S20.9700
N1—C31.492 (8)C3S—C4S1.493 (10)
C1—H1A0.9600C3S—H3S10.9700
C1—H1B0.9600C3S—H3S20.9700
C1—H1C0.9600C4S—H4S10.9700
C2—H2A0.9600C4S—H4S20.9700
C2—H2B0.9600C1T—C2T1.487 (14)
C2—H2C0.9600C1T—H1T10.9700
C3—C41.532 (9)C1T—H1T20.9700
C3—H3A0.9700C2T—C3T1.499 (14)
C3—H3B0.9700C2T—H2T10.9700
C4—C51.514 (8)C2T—H2T20.9700
C4—H4A0.9700C3T—H3T10.9700
C4—H4B0.9700C3T—H3T20.9700
C5—H5A0.9700
O1—Cu1—O2167.93 (17)O3—C6—C7120.8 (5)
O1—Cu1—O1i75.99 (18)O2—C6—C7115.8 (5)
O2—Cu1—O1i93.93 (16)C6—C7—H7A109.5
O1—Cu1—N196.69 (18)C6—C7—H7B109.5
O2—Cu1—N193.02 (18)H7A—C7—H7B109.5
O1i—Cu1—N1172.24 (18)C6—C7—H7C109.5
O6—Cu2—O488.5 (2)H7A—C7—H7C109.5
O6—Cu2—O5ii89.1 (2)H7B—C7—H7C109.5
O4—Cu2—O5ii167.51 (18)O5—C8—O4125.5 (6)
O6—Cu2—O7ii167.87 (18)O5—C8—C9118.6 (5)
O4—Cu2—O7ii90.1 (2)O4—C8—C9115.9 (5)
O5ii—Cu2—O7ii89.7 (2)C8—C9—H9A109.5
O6—Cu2—O397.94 (17)C8—C9—H9B109.5
O4—Cu2—O398.52 (17)H9A—C9—H9B109.5
O5ii—Cu2—O393.94 (16)C8—C9—H9C109.5
O7ii—Cu2—O394.19 (17)H9A—C9—H9C109.5
O6—Cu2—Cu2ii84.91 (13)H9B—C9—H9C109.5
O4—Cu2—Cu2ii84.33 (13)O6—C10—O7125.9 (6)
O5ii—Cu2—Cu2ii83.26 (12)O6—C10—C11116.5 (5)
O7ii—Cu2—Cu2ii82.96 (13)O7—C10—C11117.6 (6)
O3—Cu2—Cu2ii176.00 (12)C10—C11—H11A109.5
C5—O1—Cu1126.8 (4)C10—C11—H11B109.5
C5—O1—Cu1i125.3 (3)H11A—C11—H11B109.5
Cu1—O1—Cu1i104.01 (18)C10—C11—H11C109.5
C6—O2—Cu1115.5 (4)H11A—C11—H11C109.5
C6—O3—Cu2130.0 (4)H11B—C11—H11C109.5
C8—O4—Cu2122.6 (4)C1T—O1S—C4S113.2 (10)
C8—O5—Cu2ii124.2 (4)C4S—O1S—C1S103.7 (6)
C10—O6—Cu2122.5 (4)O1S—C1S—C2S109.0 (8)
C10—O7—Cu2ii123.7 (4)O1S—C1S—H1S1109.9
C1—N1—C2108.1 (5)C2S—C1S—H1S1109.9
C1—N1—C3106.4 (5)O1S—C1S—H1S2109.9
C2—N1—C3110.3 (5)C2S—C1S—H1S2109.9
C1—N1—Cu1111.7 (4)H1S1—C1S—H1S2108.3
C2—N1—Cu1108.3 (4)C3S—C2S—C1S100.4 (9)
C3—N1—Cu1111.9 (3)C3S—C2S—H2S1111.7
N1—C1—H1A109.5C1S—C2S—H2S1111.7
N1—C1—H1B109.5C3S—C2S—H2S2111.7
H1A—C1—H1B109.5C1S—C2S—H2S2111.7
N1—C1—H1C109.5H2S1—C2S—H2S2109.5
H1A—C1—H1C109.5C2S—C3S—C4S102.4 (8)
H1B—C1—H1C109.5C2S—C3S—H3S1111.3
N1—C2—H2A109.5C4S—C3S—H3S1111.3
N1—C2—H2B109.5C2S—C3S—H3S2111.3
H2A—C2—H2B109.5C4S—C3S—H3S2111.3
N1—C2—H2C109.5H3S1—C3S—H3S2109.2
H2A—C2—H2C109.5O1S—C4S—C3S108.2 (6)
H2B—C2—H2C109.5O1S—C4S—H4S1110.1
N1—C3—C4115.0 (5)C3S—C4S—H4S1110.1
N1—C3—H3A108.5O1S—C4S—H4S2110.1
C4—C3—H3A108.5C3S—C4S—H4S2110.1
N1—C3—H3B108.5H4S1—C4S—H4S2108.4
C4—C3—H3B108.5O1S—C1T—C2T96.0 (13)
H3A—C3—H3B107.5O1S—C1T—H1T1112.5
C5—C4—C3113.2 (5)C2T—C1T—H1T1112.5
C5—C4—H4A108.9O1S—C1T—H1T2112.5
C3—C4—H4A108.9C2T—C1T—H1T2112.5
C5—C4—H4B108.9H1T1—C1T—H1T2110.1
C3—C4—H4B108.9C1T—C2T—C3T107.0 (14)
H4A—C4—H4B107.7C1T—C2T—H2T1110.3
O1—C5—C4112.4 (5)C3T—C2T—H2T1110.3
O1—C5—H5A109.1C1T—C2T—H2T2110.3
C4—C5—H5A109.1C3T—C2T—H2T2110.3
O1—C5—H5B109.1H2T1—C2T—H2T2108.6
C4—C5—H5B109.1C2T—C3T—H3T1110.4
H5A—C5—H5B107.9C2T—C3T—H3T2110.4
O3—C6—O2123.4 (5)H3T1—C3T—H3T2108.6
O2—Cu1—O1—C5167.5 (7)C1—N1—C3—C4176.8 (5)
O1i—Cu1—O1—C5158.4 (5)C2—N1—C3—C466.2 (6)
N1—Cu1—O1—C524.2 (5)Cu1—N1—C3—C454.5 (6)
O2—Cu1—O1—Cu1i34.0 (8)N1—C3—C4—C574.3 (7)
O1i—Cu1—O1—Cu1i0.001 (1)Cu1—O1—C5—C441.8 (7)
N1—Cu1—O1—Cu1i177.36 (19)Cu1i—O1—C5—C4164.1 (4)
O1—Cu1—O2—C649.2 (9)C3—C4—C5—O162.2 (7)
O1i—Cu1—O2—C682.2 (4)Cu2—O3—C6—O2148.6 (4)
N1—Cu1—O2—C694.4 (4)Cu2—O3—C6—C731.7 (8)
O6—Cu2—O3—C6136.6 (5)Cu1—O2—C6—O36.6 (7)
O4—Cu2—O3—C646.9 (6)Cu1—O2—C6—C7173.2 (4)
O5ii—Cu2—O3—C6133.8 (5)Cu2ii—O5—C8—O42.4 (9)
O7ii—Cu2—O3—C643.8 (5)Cu2ii—O5—C8—C9177.7 (4)
O6—Cu2—O4—C888.2 (6)Cu2—O4—C8—O54.3 (10)
O5ii—Cu2—O4—C89.5 (14)Cu2—O4—C8—C9175.8 (5)
O7ii—Cu2—O4—C879.7 (6)Cu2—O6—C10—O70.3 (9)
O3—Cu2—O4—C8174.0 (5)Cu2—O6—C10—C11177.8 (4)
Cu2ii—Cu2—O4—C83.2 (5)Cu2ii—O7—C10—O60.6 (9)
O4—Cu2—O6—C1084.5 (5)Cu2ii—O7—C10—C11177.5 (4)
O5ii—Cu2—O6—C1083.3 (5)C1T—O1S—C1S—C2S127 (4)
O7ii—Cu2—O6—C100.9 (14)C4S—O1S—C1S—C2S7.9 (13)
O3—Cu2—O6—C10177.1 (5)O1S—C1S—C2S—C3S29.8 (14)
Cu2ii—Cu2—O6—C100.0 (5)C1S—C2S—C3S—C4S38.9 (12)
O1—Cu1—N1—C1146.9 (4)C1T—O1S—C4S—C3S2.4 (15)
O2—Cu1—N1—C140.3 (4)C1S—O1S—C4S—C3S17.8 (10)
O1—Cu1—N1—C294.2 (4)C2S—C3S—C4S—O1S37.0 (11)
O2—Cu1—N1—C278.7 (4)C4S—O1S—C1T—C2T45.5 (19)
O1—Cu1—N1—C327.7 (4)C1S—O1S—C1T—C2T22 (3)
O2—Cu1—N1—C3159.5 (4)O1S—C1T—C2T—C3T34 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu4(C5H12NO)2(C2H3O2)6(C4H8O)2]
Mr956.94
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)25.686 (5), 8.972 (5), 18.021 (5)
β (°) 105.782 (5)
V3)3996 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.23 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15315, 4093, 3300
Rint0.093
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.156, 1.22
No. of reflections4093
No. of parameters268
No. of restraints167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.17, 0.89

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

MS is grateful to the Higher Education Commission of Pakistan for financial support for the PhD program.

References

First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatania, P., Hovnanian, N., Cot, L., Pham Thi, M., Kormann, R. & Ganne, J. P. (1990). Mater. Res. Bull. 25, 631–642.  CrossRef CAS Web of Science Google Scholar
First citationEl Fallah, M. S., Escuer, A., Vicente, R., Badyine, F., Solans, X. & Font-Bardia, M. (2004). Inorg. Chem. 43, 7218–7226.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, J., Seidel, T. E. & Mayer, J. W. (1994). MRS Bull. 19, 15–22.  CAS Google Scholar
First citationMazhar, M., Hussain, S. M., Rabbani, F., Kociok-Köhn, G. & Molloy, K. C. (2006). Bull. Korean Chem. Soc. 27, 1572–1576.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, A. A., Hamid, M., Mazhar, M. & Molloy, K. C. (2007). Acta Cryst. E63, m1243–m1245.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTorres, J., Mermet, J. L., Madar, R., Crean, G., Gessner, T., Bertz, A., Hasse, W., Plotner, M., Binder, F. & Save, D. (1996). Microelectron. Eng. 34, 119–122.  CrossRef CAS Web of Science Google Scholar
First citationWang, S., Pang, Z., Zheng, J. C. & Wagner, M. J. (1993). Inorg. Chem. 32, 5975–5980.  CrossRef CAS Web of Science Google Scholar
First citationZhang, Y.-L., Chen, S.-W., Liu, W.-S. & Wang, D.-Q. (2004). Acta Cryst. E60, m196–m197.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1139-m1140
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds