metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1114-m1115

Di­chlorido(di­methyl­formamide-κO)[1,4,7-tris­­(2-cyano­ethyl)-1,4,7-tri­aza­cyclo­nonane-κ3N1,N4,N7]nickel(II)

aCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: zzkltl@yahoo.com.cn

(Received 9 July 2008; accepted 30 July 2008; online 6 August 2008)

The title complex, [NiCl2(C15H24N6)(C3H7NO)], is isomorphous with the CoII analogue. Three N-atom donors from the facially coordinating triaza macrocyclic ligand, one O-atom donor from dimethyl­formamide and two Cl anions surround the NiII ion in a distorted octa­hedral coordination geometry. Inter­molecular C—H⋯Cl and C—H⋯N hydrogen-bonding inter­actions link the complex mol­ecules into a three-dimensional supra­molecular architecture.

Related literature

For related literature, see: Graham et al. (2005[Graham, B., Spiccia, L., Batten, S. R., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 3983-3994.]); Li et al. (2005[Li, Q.-X., Luo, Q.-H., Li, Y.-Z., Duan, C.-Y. & Tu, Q.-Y. (2005). Inorg. Chim. Acta, 358, 504-512.]); Schlager et al. (1995[Schlager, O., Wieghardt, K., Grondey, H., Rufinska, A. & Nuber, B. (1995). Inorg. Chem. 34, 6440-6448.]); Tei et al. (1998[Tei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633-2634.] and 2003[Tei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). J. Chem. Soc. Dalton Trans. pp. 304-310.]). For the isostructural Co complex, see: Zhang et al. (2008[Zhang, Z., Geng, Z.-R., Zhao, Q. & Wang, Z.-L. (2008). Acta Cryst. E64, m1041-m1042.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C15H24N6)(C3H7NO)]

  • Mr = 491.11

  • Monoclinic, P 21 /n

  • a = 9.7657 (10) Å

  • b = 19.698 (2) Å

  • c = 12.3504 (13) Å

  • β = 97.676 (2)°

  • V = 2354.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 298 (2) K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.725, Tmax = 0.798

  • 12684 measured reflections

  • 4616 independent reflections

  • 3371 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.115

  • S = 1.00

  • 4616 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—Ni1 2.4315 (10)
Cl2—Ni1 2.4158 (10)
N1—Ni1 2.180 (3)
N2—Ni1 2.134 (3)
N3—Ni1 2.144 (3)
Ni1—O1 2.093 (2)
O1—Ni1—N2 88.31 (10)
O1—Ni1—N3 170.81 (11)
N2—Ni1—N3 83.12 (11)
O1—Ni1—N1 92.12 (10)
N2—Ni1—N1 83.15 (11)
N3—Ni1—N1 83.59 (11)
O1—Ni1—Cl2 89.34 (7)
N2—Ni1—Cl2 175.06 (8)
N3—Ni1—Cl2 98.94 (8)
N1—Ni1—Cl2 92.60 (8)
O1—Ni1—Cl1 90.90 (7)
N2—Ni1—Cl1 93.35 (8)
N3—Ni1—Cl1 92.91 (8)
N1—Ni1—Cl1 175.31 (8)
Cl2—Ni1—Cl1 91.02 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl2i 0.97 2.76 3.667 (4) 156
C3—H3A⋯Cl2i 0.97 2.80 3.756 (4) 168
C11—H11A⋯Cl1i 0.97 2.66 3.565 (4) 155
C11—H11B⋯Cl2ii 0.97 2.65 3.497 (4) 146
C18—H18B⋯N5iii 0.96 2.55 3.445 (7) 155
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4,7-Triazacyclononane ([9]aneN3) derivatives with nitrile pendant arms have attracted much interest since these triazamacrocyclic ligands can promote the assembly of multi-dimensional polymeric compounds with AgI (Tei et al., 1998). However, these triazamacrocyclic ligands exhibit different coordination behaviors when coordinating to CuII and only mononuclear CuII complexes of these ligands can be obtained, where the nitrile pendant arms are not involved in the metal coordination (Tei et al., 2003). Herein, we report the synthesis and crystal structure of a monomeric NiII complex containing 1,4,7-tris(2-cyanoethyl)-1,4,7-triazacyclononane, (I), which is isostructural to its cobalt-containing analogue (Zhang et al., 2008).

As depicted in Fig. 1, the NiII ion in this complex is ligated by a [N3OCl2] donor set consisting of three N atoms from the [9]aneN3 backbone, an O atom from a dimethylformamide molecule and two Cl- anions. The twist angle is ca. 57.6° (Schlager et al. 1995), indicating that the coordination geometry around NiII is slightly distorted from regular octahedral. All bond lengths around NiII ion (Table 1) are comparable to those observed in related NiII complexes (Graham et al. 2005; Li et al. 2005). Pendant 2-cyanoethyl groups attached to the [9]aneN3 framework are not involved in the coordination to the NiII center and point away from the macrocyclic cavity.

Two coordinated Cl- anions participate in the formation of multiple C—H···Cl hydrogen bonds (Table 2), which serve to link the complexes into two-dimensional sheets parallel to (010). These sheets are further connected through C—H···N hydrogen bonds, generating a three-dimensional supramolecular network (Fig. 2).

Related literature top

For related literature, see: Graham et al. (2005); Li et al. (2005); Schlager et al. (1995); Tei et al. (1998 and 2003). For the isostructural Co complex, see: Zhang et al. (2008).

Experimental top

The triazamacrocyclic ligand 1,4,7-tris(2-cyanoethyl)-1,4,7-triazacyclononane was prepared following a literature procedure (Tei et al., 1998). A mixture of the triazamacrocyclic ligand (29 mg, 0.1 mmol) and NiCl2.6H2O (24 mg, 0.1 mmol) in MeOH (10 ml) was refluxed for 2 h. The precipitated green solid was filtered off and subsequently dissolved in dimethylformamide. Green single crystals of (I) suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into the dimethylformamide solution. (yield: 31 mg, 63.2%). Analysis: found C 43.87, H 6.53, N 20.04%; calculated for C18H31Cl2N7NiO C 44.02, H 6.36, N 19.97%.

Refinement top

All H atoms were placed in calculated positions and treated in the subsequent refinement as riding atoms, with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level (arbitrary radii spheres for H atoms).
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the three-dimensional network formed through intermolecular C—H···Cl and C—H···N hydrogen bonds (dashed lines). For clarity, H atoms not involved in hydrogen bonding have been omitted.
Dichlorido(dimethylformamide-κO)[1,4,7-tris(2-cyanoethyl)-1,4,7- triazacyclononane-κ3N1,N4,N7]nickel(II) top
Crystal data top
[NiCl2(C15H24N6)(C3H7NO)]F(000) = 1032
Mr = 491.11Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2569 reflections
a = 9.7657 (10) Åθ = 2.4–23.0°
b = 19.698 (2) ŵ = 1.07 mm1
c = 12.3504 (13) ÅT = 298 K
β = 97.676 (2)°Block, green
V = 2354.5 (4) Å30.32 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4616 independent reflections
Radiation source: sealed tube3371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and ϕ scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.725, Tmax = 0.798k = 2419
12684 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.05P)2 + 1.55P]
where P = (Fo2 + 2Fc2)/3
4616 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.48 e Å3
0 constraints
Crystal data top
[NiCl2(C15H24N6)(C3H7NO)]V = 2354.5 (4) Å3
Mr = 491.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7657 (10) ŵ = 1.07 mm1
b = 19.698 (2) ÅT = 298 K
c = 12.3504 (13) Å0.32 × 0.24 × 0.22 mm
β = 97.676 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4616 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3371 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.798Rint = 0.050
12684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
4616 reflectionsΔρmin = 0.48 e Å3
265 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2245 (3)0.82135 (19)0.3865 (3)0.0332 (8)
H1A0.23890.78060.43070.040*
H1B0.22510.85990.43550.040*
C20.3401 (4)0.8287 (2)0.3188 (3)0.0362 (8)
H2B0.42770.82380.36540.043*
H2A0.33710.87380.28700.043*
C30.3526 (4)0.70715 (18)0.2734 (3)0.0349 (8)
H3A0.34790.70780.35140.042*
H3B0.44370.69120.26240.042*
C40.2440 (4)0.65873 (18)0.2181 (3)0.0366 (8)
H4A0.26210.65010.14400.044*
H4B0.25030.61580.25710.044*
C50.0623 (4)0.69268 (18)0.3255 (3)0.0366 (8)
H5A0.14270.68520.37920.044*
H5B0.00440.65740.33490.044*
C60.0012 (4)0.75946 (19)0.3469 (3)0.0343 (8)
H6B0.00910.76260.42380.041*
H6A0.09010.76280.30530.041*
C70.0122 (4)0.88213 (18)0.3182 (3)0.0342 (8)
H7A0.05410.88410.25240.041*
H7B0.07800.91850.31360.041*
C80.0650 (4)0.8969 (2)0.4150 (3)0.0414 (9)
H8A0.11060.94050.40290.050*
H8B0.13640.86280.41640.050*
C90.0205 (5)0.8984 (2)0.5247 (4)0.0558 (12)
C100.4296 (4)0.7914 (2)0.1522 (3)0.0368 (8)
H10A0.39660.83100.10970.044*
H10B0.42800.75350.10190.044*
C110.5811 (4)0.8044 (2)0.2007 (3)0.0421 (9)
H11A0.60350.77640.26510.051*
H11B0.64080.79070.14780.051*
C120.6089 (4)0.8739 (2)0.2298 (4)0.0464 (10)
C130.0002 (4)0.64777 (18)0.1412 (3)0.0399 (9)
H13A0.02190.65360.06740.048*
H13B0.08940.66850.14400.048*
C140.0142 (5)0.5712 (2)0.1616 (4)0.0497 (10)
H14A0.01320.56350.23930.060*
H14B0.10260.55580.12470.060*
C150.0981 (5)0.5304 (2)0.1224 (4)0.0562 (12)
C160.1301 (4)0.90640 (19)0.0180 (3)0.0386 (9)
H160.06910.87900.02690.046*
C170.2656 (6)1.0076 (3)0.0392 (4)0.0698 (16)
H17A0.25121.00690.11450.105*
H17B0.25241.05290.01110.105*
H17C0.35800.99290.03300.105*
C180.1201 (6)0.9843 (3)0.1349 (4)0.0695 (15)
H18A0.06610.94840.17180.104*
H18B0.19770.99380.17260.104*
H18C0.06411.02430.13390.104*
Cl10.17488 (9)0.74622 (4)0.02223 (7)0.0322 (2)
Cl20.11545 (8)0.80646 (4)0.07904 (7)0.0317 (2)
N10.0873 (3)0.81727 (13)0.3173 (2)0.0270 (6)
N20.3315 (3)0.77684 (15)0.2292 (2)0.0330 (7)
N30.1036 (3)0.68642 (15)0.2155 (2)0.0329 (6)
N40.0800 (4)0.8977 (2)0.6093 (3)0.0572 (10)
N50.6267 (4)0.9299 (2)0.2485 (3)0.0616 (11)
N60.1815 (4)0.4987 (2)0.0903 (3)0.0617 (11)
N70.1697 (4)0.96334 (18)0.0217 (3)0.0538 (10)
Ni10.12289 (5)0.78712 (2)0.15350 (4)0.03039 (14)
O10.1693 (3)0.88679 (12)0.11226 (19)0.0358 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0328 (19)0.042 (2)0.0252 (18)0.0027 (15)0.0034 (14)0.0026 (15)
C20.0270 (17)0.048 (2)0.032 (2)0.0031 (15)0.0006 (14)0.0051 (16)
C30.0298 (18)0.042 (2)0.0324 (19)0.0158 (15)0.0016 (14)0.0045 (16)
C40.054 (2)0.0288 (18)0.0279 (19)0.0061 (16)0.0081 (16)0.0058 (15)
C50.048 (2)0.0265 (18)0.037 (2)0.0006 (15)0.0106 (17)0.0025 (15)
C60.0291 (18)0.040 (2)0.034 (2)0.0007 (15)0.0077 (15)0.0037 (16)
C70.043 (2)0.0294 (19)0.0311 (19)0.0040 (15)0.0103 (16)0.0047 (15)
C80.045 (2)0.043 (2)0.038 (2)0.0070 (17)0.0135 (17)0.0058 (17)
C90.068 (3)0.063 (3)0.042 (3)0.014 (2)0.027 (2)0.018 (2)
C100.0333 (19)0.050 (2)0.0278 (19)0.0001 (16)0.0079 (15)0.0020 (16)
C110.0308 (19)0.066 (3)0.032 (2)0.0045 (18)0.0121 (16)0.0035 (18)
C120.031 (2)0.049 (3)0.061 (3)0.0012 (18)0.0136 (18)0.002 (2)
C130.041 (2)0.029 (2)0.048 (2)0.0078 (16)0.0020 (17)0.0043 (16)
C140.057 (3)0.040 (2)0.054 (3)0.0087 (19)0.013 (2)0.0047 (19)
C150.049 (3)0.042 (2)0.075 (3)0.004 (2)0.003 (2)0.021 (2)
C160.043 (2)0.039 (2)0.035 (2)0.0012 (16)0.0080 (17)0.0145 (16)
C170.079 (4)0.061 (3)0.061 (3)0.036 (3)0.020 (3)0.020 (2)
C180.074 (3)0.068 (3)0.062 (3)0.012 (3)0.006 (3)0.035 (3)
Cl10.0318 (4)0.0364 (5)0.0285 (4)0.0003 (3)0.0045 (3)0.0005 (3)
Cl20.0306 (4)0.0356 (4)0.0287 (4)0.0001 (3)0.0038 (3)0.0004 (3)
N10.0264 (14)0.0266 (14)0.0287 (15)0.0040 (11)0.0064 (11)0.0023 (11)
N20.0238 (15)0.0357 (17)0.0401 (18)0.0016 (12)0.0066 (12)0.0054 (13)
N30.0339 (15)0.0323 (16)0.0330 (16)0.0026 (12)0.0057 (12)0.0018 (13)
N40.059 (2)0.074 (3)0.041 (2)0.003 (2)0.0162 (18)0.0245 (19)
N50.058 (2)0.063 (3)0.071 (3)0.016 (2)0.034 (2)0.020 (2)
N60.070 (3)0.055 (2)0.060 (3)0.010 (2)0.009 (2)0.0248 (19)
N70.070 (2)0.045 (2)0.045 (2)0.0092 (18)0.0022 (18)0.0168 (17)
Ni10.0296 (2)0.0339 (3)0.0277 (2)0.00010 (18)0.00394 (17)0.00023 (19)
O10.0419 (14)0.0377 (14)0.0267 (13)0.0016 (11)0.0002 (11)0.0069 (11)
Geometric parameters (Å, º) top
C1—N11.492 (4)C10—H10A0.9700
C1—C21.499 (5)C10—H10B0.9700
C1—H1A0.9700C11—C121.433 (6)
C1—H1B0.9700C11—H11A0.9700
C2—N21.500 (5)C11—H11B0.9700
C2—H2B0.9700C12—N51.134 (6)
C2—H2A0.9700C13—N31.480 (5)
C3—N21.482 (5)C13—C141.538 (5)
C3—C41.518 (5)C13—H13A0.9700
C3—H3A0.9700C13—H13B0.9700
C3—H3B0.9700C14—C151.491 (6)
C4—N31.473 (5)C14—H14A0.9700
C4—H4A0.9700C14—H14B0.9700
C4—H4B0.9700C15—N61.139 (6)
C5—N31.473 (5)C16—O11.238 (4)
C5—C61.483 (5)C16—N71.304 (5)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C17—N71.419 (6)
C6—N11.490 (4)C17—H17A0.9600
C6—H6B0.9700C17—H17B0.9600
C6—H6A0.9700C17—H17C0.9600
C7—N11.474 (4)C18—N71.476 (6)
C7—C81.524 (5)C18—H18A0.9600
C7—H7A0.9700C18—H18B0.9600
C7—H7B0.9700C18—H18C0.9600
C8—C91.493 (6)Cl1—Ni12.4315 (10)
C8—H8A0.9700Cl2—Ni12.4158 (10)
C8—H8B0.9700N1—Ni12.180 (3)
C9—N41.126 (6)N2—Ni12.134 (3)
C10—N21.466 (4)N3—Ni12.144 (3)
C10—C111.541 (5)Ni1—O12.093 (2)
N1—C1—C2111.8 (3)C14—C13—H13A107.8
N1—C1—H1A109.3N3—C13—H13B107.8
C2—C1—H1A109.3C14—C13—H13B107.8
N1—C1—H1B109.3H13A—C13—H13B107.1
C2—C1—H1B109.3C15—C14—C13112.9 (4)
H1A—C1—H1B107.9C15—C14—H14A109.0
C1—C2—N2111.9 (3)C13—C14—H14A109.0
C1—C2—H2B109.2C15—C14—H14B109.0
N2—C2—H2B109.2C13—C14—H14B109.0
C1—C2—H2A109.2H14A—C14—H14B107.8
N2—C2—H2A109.2N6—C15—C14178.3 (5)
H2B—C2—H2A107.9O1—C16—N7123.5 (4)
N2—C3—C4111.2 (3)O1—C16—H16118.2
N2—C3—H3A109.4N7—C16—H16118.2
C4—C3—H3A109.4N7—C17—H17A109.5
N2—C3—H3B109.4N7—C17—H17B109.5
C4—C3—H3B109.4H17A—C17—H17B109.5
H3A—C3—H3B108.0N7—C17—H17C109.5
N3—C4—C3111.7 (3)H17A—C17—H17C109.5
N3—C4—H4A109.3H17B—C17—H17C109.5
C3—C4—H4A109.3N7—C18—H18A109.5
N3—C4—H4B109.3N7—C18—H18B109.5
C3—C4—H4B109.3H18A—C18—H18B109.5
H4A—C4—H4B107.9N7—C18—H18C109.5
N3—C5—C6113.9 (3)H18A—C18—H18C109.5
N3—C5—H5A108.8H18B—C18—H18C109.5
C6—C5—H5A108.8C7—N1—C6111.3 (3)
N3—C5—H5B108.8C7—N1—C1111.0 (3)
C6—C5—H5B108.8C6—N1—C1113.2 (3)
H5A—C5—H5B107.7C7—N1—Ni1112.6 (2)
C5—C6—N1112.3 (3)C6—N1—Ni1100.7 (2)
C5—C6—H6B109.1C1—N1—Ni1107.69 (19)
N1—C6—H6B109.1C10—N2—C3110.5 (3)
C5—C6—H6A109.1C10—N2—C2111.6 (3)
N1—C6—H6A109.1C3—N2—C2111.5 (3)
H6B—C6—H6A107.9C10—N2—Ni1111.5 (2)
N1—C7—C8118.1 (3)C3—N2—Ni1109.1 (2)
N1—C7—H7A107.8C2—N2—Ni1102.4 (2)
C8—C7—H7A107.8C4—N3—C5112.3 (3)
N1—C7—H7B107.8C4—N3—C13112.3 (3)
C8—C7—H7B107.8C5—N3—C13111.5 (3)
H7A—C7—H7B107.1C4—N3—Ni1103.0 (2)
C9—C8—C7116.1 (3)C5—N3—Ni1107.4 (2)
C9—C8—H8A108.3C13—N3—Ni1109.9 (2)
C7—C8—H8A108.3C16—N7—C17122.5 (4)
C9—C8—H8B108.3C16—N7—C18121.4 (4)
C7—C8—H8B108.3C17—N7—C18116.1 (4)
H8A—C8—H8B107.4O1—Ni1—N288.31 (10)
N4—C9—C8176.6 (5)O1—Ni1—N3170.81 (11)
N2—C10—C11117.2 (3)N2—Ni1—N383.12 (11)
N2—C10—H10A108.0O1—Ni1—N192.12 (10)
C11—C10—H10A108.0N2—Ni1—N183.15 (11)
N2—C10—H10B108.0N3—Ni1—N183.59 (11)
C11—C10—H10B108.0O1—Ni1—Cl289.34 (7)
H10A—C10—H10B107.2N2—Ni1—Cl2175.06 (8)
C12—C11—C10113.4 (3)N3—Ni1—Cl298.94 (8)
C12—C11—H11A108.9N1—Ni1—Cl292.60 (8)
C10—C11—H11A108.9O1—Ni1—Cl190.90 (7)
C12—C11—H11B108.9N2—Ni1—Cl193.35 (8)
C10—C11—H11B108.9N3—Ni1—Cl192.91 (8)
H11A—C11—H11B107.7N1—Ni1—Cl1175.31 (8)
N5—C12—C11176.7 (5)Cl2—Ni1—Cl191.02 (3)
N3—C13—C14118.2 (3)C16—O1—Ni1118.2 (2)
N3—C13—H13A107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl2i0.972.763.667 (4)156
C2—H2A···O10.972.543.076 (5)115
C3—H3A···Cl2i0.972.803.756 (4)168
C7—H7A···Cl20.972.633.394 (4)135
C10—H10A···O10.972.483.147 (5)126
C10—H10B···Cl10.972.733.192 (4)110
C11—H11A···Cl1i0.972.663.565 (4)155
C11—H11B···Cl2ii0.972.653.497 (4)146
C13—H13A···Cl10.972.693.415 (4)132
C16—H16···Cl10.932.813.233 (4)109
C16—H16···Cl20.932.763.268 (4)115
C18—H18B···N5iii0.962.553.445 (7)155
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[NiCl2(C15H24N6)(C3H7NO)]
Mr491.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.7657 (10), 19.698 (2), 12.3504 (13)
β (°) 97.676 (2)
V3)2354.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.725, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
12684, 4616, 3371
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.115, 1.01
No. of reflections4616
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.48

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Cl1—Ni12.4315 (10)N2—Ni12.134 (3)
Cl2—Ni12.4158 (10)N3—Ni12.144 (3)
N1—Ni12.180 (3)Ni1—O12.093 (2)
O1—Ni1—N288.31 (10)N3—Ni1—Cl298.94 (8)
O1—Ni1—N3170.81 (11)N1—Ni1—Cl292.60 (8)
N2—Ni1—N383.12 (11)O1—Ni1—Cl190.90 (7)
O1—Ni1—N192.12 (10)N2—Ni1—Cl193.35 (8)
N2—Ni1—N183.15 (11)N3—Ni1—Cl192.91 (8)
N3—Ni1—N183.59 (11)N1—Ni1—Cl1175.31 (8)
O1—Ni1—Cl289.34 (7)Cl2—Ni1—Cl191.02 (3)
N2—Ni1—Cl2175.06 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl2i0.972.763.667 (4)156
C3—H3A···Cl2i0.972.803.756 (4)168
C11—H11A···Cl1i0.972.663.565 (4)155
C11—H11B···Cl2ii0.972.653.497 (4)146
C18—H18B···N5iii0.962.553.445 (7)155
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+2, z.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 20475026).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGraham, B., Spiccia, L., Batten, S. R., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 3983–3994.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Q.-X., Luo, Q.-H., Li, Y.-Z., Duan, C.-Y. & Tu, Q.-Y. (2005). Inorg. Chim. Acta, 358, 504–512.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchlager, O., Wieghardt, K., Grondey, H., Rufinska, A. & Nuber, B. (1995). Inorg. Chem. 34, 6440–6448.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). J. Chem. Soc. Dalton Trans. pp. 304–310.  CSD CrossRef Google Scholar
First citationTei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633–2634.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Z., Geng, Z.-R., Zhao, Q. & Wang, Z.-L. (2008). Acta Cryst. E64, m1041–m1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1114-m1115
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds