organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(carb­oxy­meth­yl)ammonium 4-toluene­sulfonate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 August 2008; accepted 14 August 2008; online 20 August 2008)

The imino­diacetic acid component of the title salt, C4H8NO4+·C7H7SO3, is protonated at the N atom. The cation uses the ammonium group to form hydrogen bonds to the O atoms of two adjacent sulfonate groups. In addition, the carboxylic acid portions of the cation form hydrogen bonds to the sulfonate groups. The hydrogen-bonding inter­actions give rise to a layer structure.

Related literature

For the crystal structures of imino­diacetic acid hydro­halides, see: Oskarsson (1973[Oskarsson, Å. (1973). Acta Cryst. B29, 1747-1751.], 1974a[Oskarsson, Å. (1974a). Acta Cryst. B30, 780-783.],b[Oskarsson, Å. (1974b). Acta Cryst. B30, 1184-1188.], 1976[Oskarsson, A. (1976). Acta Cryst. B32, 2163-2170.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8NO4+·C7H7O3S

  • Mr = 305.30

  • Orthorhombic, P b c a

  • a = 9.9291 (2) Å

  • b = 10.3636 (2) Å

  • c = 25.8862 (5) Å

  • V = 2663.72 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 (2) K

  • 0.27 × 0.27 × 0.27 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.929, Tmax = 0.929

  • 20842 measured reflections

  • 3059 independent reflections

  • 2560 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.119

  • S = 1.15

  • 3059 reflections

  • 198 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.88 (1) 2.02 (1) 2.885 (2) 167 (2)
N1—H1N2⋯O3ii 0.88 (1) 2.06 (2) 2.792 (2) 140 (2)
O5—H5O⋯O1 0.84 (1) 1.79 (1) 2.607 (2) 164 (3)
O7—H7O⋯O2iii 0.84 (1) 1.85 (1) 2.659 (2) 160 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y-1, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structures of iminodiacetic acid hydrohalides, see: Oskarsson (1973, 1974a,b, 1976).

Experimental top

Iminodiacetic acid (0.55 g, 4 mmol) and p-toluenesulfonic acid (0.65 g, 4 mmol) were heated in toluene (100 ml) for 1 h. Crystals were isolated from the cool solution after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Ueq(carrier C). The acid and ammonium H atoms were refined with distance restraints of O—H = 0.84 (1) and N—H = 0.88 (1) Å; their isotropic displacement parameters were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (C4H8NO4)+(C7H7O3S)- at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(carboxymethyl)ammonium 4-toluenesulfonate top
Crystal data top
C4H8NO4+·C7H7O3SF(000) = 1280
Mr = 305.30Dx = 1.523 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4293 reflections
a = 9.9291 (2) Åθ = 2.9–27.2°
b = 10.3636 (2) ŵ = 0.28 mm1
c = 25.8862 (5) ÅT = 100 K
V = 2663.72 (9) Å3Triangular block, colorless
Z = 80.27 × 0.27 × 0.27 mm
Data collection top
Bruker SMART APEX
diffractometer
3059 independent reflections
Radiation source: fine-focus sealed tube2560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 127
Tmin = 0.930, Tmax = 0.930k = 1313
20842 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.8206P]
where P = (Fo2 + 2Fc2)/3
3059 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = 0.50 e Å3
0 constraints
Crystal data top
C4H8NO4+·C7H7O3SV = 2663.72 (9) Å3
Mr = 305.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.9291 (2) ŵ = 0.28 mm1
b = 10.3636 (2) ÅT = 100 K
c = 25.8862 (5) Å0.27 × 0.27 × 0.27 mm
Data collection top
Bruker SMART APEX
diffractometer
3059 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2560 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.930Rint = 0.048
20842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.42 e Å3
3059 reflectionsΔρmin = 0.50 e Å3
198 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49041 (5)0.84948 (4)0.358654 (17)0.01248 (14)
O10.55419 (15)0.74172 (13)0.38508 (5)0.0195 (3)
O20.56209 (14)0.88382 (13)0.31102 (5)0.0163 (3)
O30.34727 (14)0.83294 (13)0.35029 (5)0.0190 (3)
O40.40223 (14)0.52637 (13)0.30853 (5)0.0171 (3)
O50.51261 (16)0.49339 (13)0.38301 (5)0.0199 (3)
H5O0.510 (3)0.5747 (10)0.3841 (10)0.034 (7)*
O60.20627 (14)0.17528 (13)0.21695 (5)0.0176 (3)
O70.29656 (14)0.02406 (13)0.22217 (5)0.0163 (3)
H7O0.229 (2)0.047 (3)0.2048 (10)0.051 (9)*
N10.37466 (17)0.27383 (15)0.28845 (6)0.0129 (3)
H1N10.402 (3)0.316 (2)0.2610 (7)0.031 (7)*
H1N20.2899 (11)0.296 (2)0.2924 (8)0.014 (5)*
C10.50864 (19)0.98391 (18)0.40013 (7)0.0141 (4)
C20.3995 (2)1.02980 (19)0.42797 (8)0.0187 (4)
H20.31460.98790.42560.022*
C30.4152 (2)1.1376 (2)0.45941 (8)0.0212 (4)
H30.34041.16810.47880.025*
C40.5374 (2)1.20164 (19)0.46306 (7)0.0183 (4)
C50.6471 (2)1.15329 (19)0.43556 (8)0.0191 (4)
H50.73191.19520.43800.023*
C60.6335 (2)1.04440 (19)0.40462 (7)0.0171 (4)
H60.70931.01120.38660.021*
C70.5517 (2)1.3217 (2)0.49545 (8)0.0247 (5)
H7A0.46361.36310.49930.037*
H7B0.61421.38150.47850.037*
H7C0.58681.29850.52960.037*
C80.45172 (19)0.45546 (18)0.34029 (7)0.0137 (4)
C90.45326 (19)0.31071 (18)0.33494 (7)0.0137 (4)
H9A0.54720.27980.33150.016*
H9B0.41320.27050.36600.016*
C100.3811 (2)0.13288 (17)0.27813 (7)0.0142 (4)
H10A0.35700.08450.30980.017*
H10B0.47380.10850.26800.017*
C110.28461 (19)0.09925 (18)0.23534 (7)0.0132 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0104 (2)0.0118 (2)0.0153 (2)0.00084 (17)0.00072 (16)0.00057 (16)
O10.0240 (8)0.0125 (7)0.0221 (7)0.0013 (6)0.0072 (6)0.0031 (5)
O20.0164 (7)0.0158 (7)0.0168 (7)0.0021 (6)0.0028 (5)0.0016 (5)
O30.0109 (7)0.0226 (8)0.0233 (7)0.0016 (6)0.0006 (6)0.0024 (5)
O40.0169 (7)0.0148 (7)0.0197 (7)0.0007 (6)0.0025 (5)0.0007 (5)
O50.0293 (9)0.0111 (7)0.0192 (7)0.0007 (6)0.0092 (6)0.0014 (5)
O60.0156 (7)0.0155 (7)0.0217 (7)0.0016 (6)0.0030 (5)0.0033 (5)
O70.0134 (7)0.0143 (7)0.0211 (7)0.0023 (6)0.0006 (6)0.0043 (5)
N10.0123 (8)0.0109 (8)0.0154 (8)0.0011 (6)0.0002 (6)0.0000 (6)
C10.0144 (9)0.0131 (9)0.0149 (8)0.0001 (7)0.0003 (7)0.0010 (7)
C20.0148 (10)0.0198 (10)0.0215 (9)0.0019 (8)0.0032 (8)0.0004 (8)
C30.0190 (11)0.0217 (10)0.0228 (10)0.0025 (8)0.0066 (8)0.0020 (8)
C40.0237 (11)0.0162 (10)0.0150 (9)0.0007 (8)0.0001 (8)0.0004 (7)
C50.0145 (10)0.0225 (10)0.0202 (9)0.0045 (8)0.0002 (8)0.0023 (8)
C60.0130 (9)0.0199 (10)0.0183 (9)0.0004 (8)0.0014 (7)0.0027 (7)
C70.0276 (12)0.0219 (11)0.0247 (10)0.0011 (9)0.0010 (9)0.0067 (8)
C80.0102 (9)0.0150 (9)0.0161 (8)0.0005 (7)0.0005 (7)0.0004 (7)
C90.0125 (9)0.0133 (9)0.0152 (9)0.0002 (7)0.0026 (7)0.0000 (7)
C100.0132 (9)0.0095 (8)0.0200 (9)0.0004 (7)0.0017 (7)0.0009 (7)
C110.0108 (9)0.0132 (9)0.0157 (8)0.0019 (7)0.0028 (7)0.0012 (7)
Geometric parameters (Å, º) top
S1—O31.4478 (14)C2—H20.9500
S1—O11.4547 (14)C3—C41.386 (3)
S1—O21.4675 (13)C3—H30.9500
S1—C11.768 (2)C4—C51.394 (3)
O4—C81.207 (2)C4—C71.507 (3)
O5—C81.320 (2)C5—C61.390 (3)
O5—H5o0.84 (1)C5—H50.9500
O6—C111.205 (2)C6—H60.9500
O7—C111.328 (2)C7—H7A0.9800
O7—H7o0.84 (1)C7—H7B0.9800
N1—C91.484 (2)C7—H7C0.9800
N1—C101.486 (2)C8—C91.507 (3)
N1—H1n10.88 (1)C9—H9A0.9900
N1—H1n20.88 (1)C9—H9B0.9900
C1—C21.385 (3)C10—C111.505 (3)
C1—C61.394 (3)C10—H10A0.9900
C2—C31.391 (3)C10—H10B0.9900
O3—S1—O1114.00 (9)C4—C5—H5119.7
O3—S1—O2112.28 (8)C5—C6—C1119.93 (18)
O1—S1—O2111.72 (8)C5—C6—H6120.0
O3—S1—C1106.53 (9)C1—C6—H6120.0
O1—S1—C1105.95 (9)C4—C7—H7A109.5
O2—S1—C1105.63 (8)C4—C7—H7B109.5
C8—O5—H5O108.2 (18)H7A—C7—H7B109.5
C11—O7—H7O110 (2)C4—C7—H7C109.5
C9—N1—C10112.10 (14)H7A—C7—H7C109.5
C9—N1—H1N1111.7 (17)H7B—C7—H7C109.5
C10—N1—H1N1109.4 (16)O4—C8—O5125.13 (18)
C9—N1—H1N2110.2 (14)O4—C8—C9123.20 (17)
C10—N1—H1N2108.3 (15)O5—C8—C9111.66 (15)
H1N1—N1—H1N2105 (2)N1—C9—C8109.01 (15)
C2—C1—C6119.85 (18)N1—C9—H9A109.9
C2—C1—S1120.41 (15)C8—C9—H9A109.9
C6—C1—S1119.73 (15)N1—C9—H9B109.9
C1—C2—C3119.53 (19)C8—C9—H9B109.9
C1—C2—H2120.2H9A—C9—H9B108.3
C3—C2—H2120.2N1—C10—C11109.43 (15)
C4—C3—C2121.46 (18)N1—C10—H10A109.8
C4—C3—H3119.3C11—C10—H10A109.8
C2—C3—H3119.3N1—C10—H10B109.8
C3—C4—C5118.49 (18)C11—C10—H10B109.8
C3—C4—C7121.06 (19)H10A—C10—H10B108.2
C5—C4—C7120.4 (2)O6—C11—O7125.83 (17)
C6—C5—C4120.68 (19)O6—C11—C10123.36 (17)
C6—C5—H5119.7O7—C11—C10110.79 (16)
O3—S1—C1—C216.35 (19)C3—C4—C5—C60.9 (3)
O1—S1—C1—C2105.40 (17)C7—C4—C5—C6178.42 (18)
O2—S1—C1—C2135.94 (16)C4—C5—C6—C11.2 (3)
O3—S1—C1—C6163.36 (15)C2—C1—C6—C52.3 (3)
O1—S1—C1—C674.89 (17)S1—C1—C6—C5177.39 (15)
O2—S1—C1—C643.77 (18)C10—N1—C9—C8175.26 (15)
C6—C1—C2—C31.3 (3)O4—C8—C9—N15.4 (3)
S1—C1—C2—C3178.42 (15)O5—C8—C9—N1175.76 (15)
C1—C2—C3—C40.9 (3)C9—N1—C10—C11172.17 (15)
C2—C3—C4—C51.9 (3)N1—C10—C11—O66.8 (3)
C2—C3—C4—C7177.37 (19)N1—C10—C11—O7174.56 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.88 (1)2.02 (1)2.885 (2)167 (2)
N1—H1N2···O3ii0.88 (1)2.06 (2)2.792 (2)140 (2)
O5—H5O···O10.84 (1)1.79 (1)2.607 (2)164 (3)
O7—H7O···O2iii0.84 (1)1.85 (1)2.659 (2)160 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x1/2, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H8NO4+·C7H7O3S
Mr305.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)9.9291 (2), 10.3636 (2), 25.8862 (5)
V3)2663.72 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.27 × 0.27 × 0.27
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.930, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
20842, 3059, 2560
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.119, 1.15
No. of reflections3059
No. of parameters198
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.88 (1)2.02 (1)2.885 (2)167 (2)
N1—H1N2···O3ii0.88 (1)2.06 (2)2.792 (2)140 (2)
O5—H5O···O10.84 (1)1.79 (1)2.607 (2)164 (3)
O7—H7O···O2iii0.84 (1)1.85 (1)2.659 (2)160 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x1/2, y1, z+1/2.
 

Acknowledgements

We thank the University of Malaya for funding this study (SF022/2007 A, FS339/2008 A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOskarsson, Å. (1973). Acta Cryst. B29, 1747–1751.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOskarsson, Å. (1974a). Acta Cryst. B30, 780–783.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOskarsson, Å. (1974b). Acta Cryst. B30, 1184–1188.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOskarsson, A. (1976). Acta Cryst. B32, 2163–2170.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds