organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-N′-(2-meth­oxy­naphthyl­­idene)benzohydrazide

aDepartment of Chemistry, Shangqiu Normal University, Shangqiu 476000, People's Republic of China
*Correspondence e-mail: xiaoyang_qiu@126.com

(Received 13 August 2008; accepted 21 August 2008; online 23 August 2008)

The mol­ecule of the title Schiff base compound, C20H18N2O3, prepared by the reaction of 2-meth­oxy-1-naphthyl­aldehyde and 4-methoxy­benzohydrazide, exists in a trans configuration with respect to the imine group. The naphthyl ring system makes a dihedral angle of 71.4 (2)° with the mean plane of the benzene ring. In the crystal structure, mol­ecules are linked into one-dimensional chains parallel to the c axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the biological properties of hydrazone derivatives, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]). For our previous reports of hydrazones, see: Qiu, Fang et al. (2006[Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685-o2686.]); Qiu, Luo et al. (2006a[Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006a). Acta Cryst. E62, o3531-o3532.],b[Qiu, X.-Y., Luo, Q.-Y., Yang, S.-L. & Liu, W.-S. (2006b). Acta Cryst. E62, o4291-o4292.]); Qiu, Xu et al. (2006[Qiu, X.-Y., Xu, H.-J., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2304-o2305.]). For related structures, see: Singh et al. (2007[Singh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895.]); Narayana et al. (2007[Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.]); Cui et al. (2007[Cui, J., Yin, H. & Qiao, Y. (2007). Acta Cryst. E63, o3548.]); Diao et al. (2008[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O3

  • Mr = 334.36

  • Monoclinic, P 21 /c

  • a = 11.675 (3) Å

  • b = 17.937 (4) Å

  • c = 8.508 (3) Å

  • β = 110.288 (3)°

  • V = 1671.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS;Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.984

  • 9333 measured reflections

  • 3445 independent reflections

  • 1657 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.148

  • S = 0.97

  • 3445 reflections

  • 231 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.895 (10) 2.084 (12) 2.965 (3) 167 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds, which are derived from the reaction of aldehydes with hydrazides, have been widely studied due to their excellent biological properties (Bedia et al., 2006; Rollas et al., 2002; Fun et al., 2008). Recently, we have reported a few Schiff hydrazone compounds (Qiu, Fang et al., 2006; Qiu, Luo et al., 2006a, 2006b; Qiu, Xu et al., 2006), we report herein the crystal structure of the title new compound, (I).

The molecule of (I), Fig. 1, exists in a trans configuration with respect to the methylidene group. The naphthyl ring makes a dihedral angle of 71.4 (2)° with the mean plane of the benzene ring. The bond lengths and angles in (I) are found to have normal values and comparable to the values in similar compounds (Singh et al., 2007; Narayana et al., 2007; Cui et al., 2007; Diao et al., 2008).

In the crystal structure, molecules are linked into one-dimensional chains parallel to the c axis by intermolecular N—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the biological properties of hydrazone derivatives, see: Bedia et al. (2006); Rollas et al. (2002); Fun et al. (2008). For ourprevious reports of hydrazones, see: Qiu, Fang et al. (2006); Qiu, Luo et al. (2006a,b); Qiu, Xu et al. (2006). For related structures, see: Singh et al. (2007); Narayana et al. (2007); Cui et al. (2007); Diao et al. (2008).

Experimental top

The title compound was prepared by the Schiff base condensation of equimolar (0.5 mmol each) 2-methoxy-1-naphthylaldehyde and 4-methoxybenzohydrazide in methanol (20 ml). Excess methanol was removed from the reaction mixture with distillation. The colourless solid was filtered and dried in air. Colourless block-shaped crystals suitable for X-ray diffraction were obtained from a methanol solution.

Refinement top

The imino H atom was located in a difference map and refined with N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically [C—H = 0.93–0.96 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). Rigid rotating group models were used for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis.
(I) top
Crystal data top
C20H18N2O3F(000) = 704
Mr = 334.36Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1254 reflections
a = 11.675 (3) Åθ = 2.5–24.5°
b = 17.937 (4) ŵ = 0.09 mm1
c = 8.508 (3) ÅT = 298 K
β = 110.288 (3)°Block, colourless
V = 1671.2 (8) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3445 independent reflections
Radiation source: fine-focus sealed tube1657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 26.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS;Sheldrick, 1996)
h = 1414
Tmin = 0.982, Tmax = 0.984k = 2218
9333 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0631P)2]
where P = (Fo2 + 2Fc2)/3
3445 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.18 e Å3
0 constraints
Crystal data top
C20H18N2O3V = 1671.2 (8) Å3
Mr = 334.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.675 (3) ŵ = 0.09 mm1
b = 17.937 (4) ÅT = 298 K
c = 8.508 (3) Å0.20 × 0.20 × 0.18 mm
β = 110.288 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3445 independent reflections
Absorption correction: multi-scan
(SADABS;Sheldrick, 1996)
1657 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.048
9333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.17 e Å3
3445 reflectionsΔρmin = 0.18 e Å3
231 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02930 (16)0.01580 (9)0.8049 (2)0.0725 (6)
O20.25127 (15)0.32586 (9)0.7183 (2)0.0629 (5)
O30.60192 (18)0.45464 (11)1.4125 (2)0.0838 (6)
N10.10006 (17)0.22371 (11)0.7604 (3)0.0547 (6)
N20.18996 (18)0.25413 (11)0.8945 (3)0.0535 (6)
C10.0487 (2)0.12593 (13)0.6609 (3)0.0492 (6)
C20.0564 (2)0.04936 (14)0.6724 (3)0.0559 (7)
C30.1458 (3)0.00788 (16)0.5506 (4)0.0722 (8)
H30.14770.04380.55910.087*
C40.2290 (3)0.04341 (17)0.4209 (4)0.0762 (9)
H40.28780.01540.34070.091*
C50.2297 (2)0.12115 (16)0.4033 (3)0.0597 (7)
C60.3197 (3)0.15768 (19)0.2698 (4)0.0765 (9)
H60.37860.12950.18990.092*
C70.3220 (3)0.2322 (2)0.2562 (4)0.0818 (9)
H70.38270.25530.16840.098*
C80.2336 (3)0.27484 (17)0.3731 (4)0.0790 (9)
H80.23560.32650.36300.095*
C90.1444 (2)0.24203 (15)0.5021 (4)0.0662 (8)
H90.08590.27180.57820.079*
C100.1381 (2)0.16348 (13)0.5239 (3)0.0504 (6)
C110.0218 (3)0.06329 (14)0.8242 (4)0.0882 (10)
H11A0.05840.07610.82270.132*
H11B0.08130.07850.92900.132*
H11C0.03740.08830.73390.132*
C120.0490 (2)0.16441 (13)0.7918 (3)0.0542 (7)
H120.07510.14570.90050.065*
C130.2622 (2)0.30763 (13)0.8640 (4)0.0504 (6)
C140.3530 (2)0.34273 (12)1.0105 (3)0.0486 (6)
C150.3425 (2)0.34574 (13)1.1687 (3)0.0562 (7)
H150.27680.32251.18660.067*
C160.4276 (3)0.38248 (15)1.2979 (3)0.0658 (8)
H160.41940.38301.40280.079*
C170.5237 (2)0.41823 (13)1.2766 (4)0.0612 (8)
C180.5369 (2)0.41555 (15)1.1216 (4)0.0670 (8)
H180.60280.43901.10500.080*
C190.4517 (2)0.37779 (14)0.9909 (3)0.0593 (7)
H190.46170.37610.88720.071*
C200.6915 (3)0.50102 (18)1.3936 (4)0.1010 (12)
H20A0.74040.47361.34330.151*
H20B0.74230.51921.50140.151*
H20C0.65360.54241.32300.151*
H20.200 (2)0.2348 (14)0.9956 (19)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0747 (13)0.0456 (11)0.0843 (15)0.0046 (9)0.0111 (11)0.0043 (10)
O20.0651 (12)0.0541 (11)0.0604 (13)0.0120 (8)0.0104 (10)0.0021 (9)
O30.0788 (14)0.0771 (13)0.0713 (14)0.0238 (11)0.0047 (11)0.0070 (11)
N10.0450 (12)0.0532 (13)0.0577 (14)0.0072 (10)0.0072 (11)0.0104 (11)
N20.0515 (12)0.0488 (13)0.0524 (14)0.0103 (10)0.0083 (11)0.0016 (11)
C10.0468 (15)0.0476 (15)0.0547 (17)0.0081 (12)0.0193 (13)0.0066 (13)
C20.0513 (16)0.0502 (16)0.0646 (19)0.0060 (13)0.0181 (15)0.0040 (14)
C30.0683 (19)0.0537 (17)0.089 (2)0.0161 (15)0.0197 (18)0.0126 (16)
C40.068 (2)0.069 (2)0.081 (2)0.0206 (16)0.0136 (18)0.0232 (17)
C50.0531 (17)0.0646 (18)0.0578 (18)0.0094 (14)0.0146 (14)0.0110 (15)
C60.0603 (19)0.094 (3)0.063 (2)0.0087 (17)0.0059 (15)0.0136 (18)
C70.070 (2)0.092 (3)0.069 (2)0.0049 (18)0.0060 (17)0.0046 (19)
C80.0643 (19)0.0676 (19)0.090 (2)0.0006 (16)0.0075 (18)0.0054 (17)
C90.0542 (17)0.0577 (18)0.075 (2)0.0040 (13)0.0078 (15)0.0026 (15)
C100.0438 (14)0.0504 (15)0.0572 (17)0.0056 (12)0.0177 (13)0.0069 (13)
C110.103 (3)0.0471 (18)0.109 (3)0.0049 (16)0.030 (2)0.0073 (17)
C120.0488 (15)0.0477 (15)0.0603 (17)0.0032 (12)0.0115 (13)0.0016 (13)
C130.0508 (15)0.0391 (14)0.0590 (18)0.0021 (12)0.0160 (14)0.0056 (13)
C140.0418 (14)0.0382 (13)0.0590 (18)0.0006 (11)0.0090 (13)0.0026 (12)
C150.0526 (15)0.0515 (16)0.0634 (19)0.0078 (12)0.0188 (14)0.0006 (14)
C160.0723 (19)0.0597 (17)0.0570 (18)0.0077 (15)0.0117 (16)0.0060 (14)
C170.0516 (17)0.0424 (15)0.073 (2)0.0052 (12)0.0000 (15)0.0074 (14)
C180.0535 (17)0.0699 (19)0.068 (2)0.0162 (14)0.0087 (15)0.0117 (16)
C190.0534 (16)0.0616 (16)0.0616 (18)0.0061 (13)0.0181 (14)0.0078 (14)
C200.085 (2)0.083 (2)0.104 (3)0.0336 (19)0.006 (2)0.001 (2)
Geometric parameters (Å, º) top
O1—C21.361 (3)C8—C91.358 (4)
O1—C111.434 (3)C8—H80.9300
O2—C131.245 (3)C9—C101.420 (3)
O3—C171.366 (3)C9—H90.9300
O3—C201.388 (3)C11—H11A0.9600
N1—C121.292 (3)C11—H11B0.9600
N1—N21.368 (3)C11—H11C0.9600
N2—C131.361 (3)C12—H120.9300
N2—H20.895 (10)C13—C141.470 (3)
C1—C21.382 (3)C14—C191.372 (3)
C1—C101.434 (3)C14—C151.395 (3)
C1—C121.462 (3)C15—C161.368 (3)
C2—C31.402 (4)C15—H150.9300
C3—C41.351 (4)C16—C171.358 (3)
C3—H30.9300C16—H160.9300
C4—C51.402 (4)C17—C181.381 (4)
C4—H40.9300C18—C191.384 (3)
C5—C61.413 (4)C18—H180.9300
C5—C101.419 (3)C19—H190.9300
C6—C71.341 (4)C20—H20A0.9600
C6—H60.9300C20—H20B0.9600
C7—C81.388 (4)C20—H20C0.9600
C7—H70.9300
C2—O1—C11118.4 (2)O1—C11—H11A109.5
C17—O3—C20119.9 (3)O1—C11—H11B109.5
C12—N1—N2115.6 (2)H11A—C11—H11B109.5
C13—N2—N1118.0 (2)O1—C11—H11C109.5
C13—N2—H2124.7 (18)H11A—C11—H11C109.5
N1—N2—H2117.2 (18)H11B—C11—H11C109.5
C2—C1—C10118.5 (2)N1—C12—C1121.7 (2)
C2—C1—C12117.9 (2)N1—C12—H12119.2
C10—C1—C12123.6 (2)C1—C12—H12119.2
O1—C2—C1116.8 (2)O2—C13—N2121.3 (2)
O1—C2—C3121.5 (2)O2—C13—C14121.8 (2)
C1—C2—C3121.7 (3)N2—C13—C14116.9 (2)
C4—C3—C2119.6 (3)C19—C14—C15117.3 (2)
C4—C3—H3120.2C19—C14—C13118.9 (2)
C2—C3—H3120.2C15—C14—C13123.8 (2)
C3—C4—C5122.2 (3)C16—C15—C14120.7 (2)
C3—C4—H4118.9C16—C15—H15119.6
C5—C4—H4118.9C14—C15—H15119.6
C4—C5—C6121.5 (3)C17—C16—C15121.6 (3)
C4—C5—C10118.7 (3)C17—C16—H16119.2
C6—C5—C10119.8 (3)C15—C16—H16119.2
C7—C6—C5121.3 (3)C16—C17—O3117.0 (3)
C7—C6—H6119.4C16—C17—C18118.8 (3)
C5—C6—H6119.4O3—C17—C18124.1 (3)
C6—C7—C8120.0 (3)C17—C18—C19119.8 (3)
C6—C7—H7120.0C17—C18—H18120.1
C8—C7—H7120.0C19—C18—H18120.1
C9—C8—C7120.8 (3)C14—C19—C18121.7 (3)
C9—C8—H8119.6C14—C19—H19119.1
C7—C8—H8119.6C18—C19—H19119.1
C8—C9—C10121.8 (3)O3—C20—H20A109.5
C8—C9—H9119.1O3—C20—H20B109.5
C10—C9—H9119.1H20A—C20—H20B109.5
C5—C10—C9116.4 (2)O3—C20—H20C109.5
C5—C10—C1119.3 (2)H20A—C20—H20C109.5
C9—C10—C1124.2 (2)H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.08 (1)2.965 (3)167 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18N2O3
Mr334.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.675 (3), 17.937 (4), 8.508 (3)
β (°) 110.288 (3)
V3)1671.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS;Sheldrick, 1996)
Tmin, Tmax0.982, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9333, 3445, 1657
Rint0.048
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.148, 0.97
No. of reflections3445
No. of parameters231
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.895 (10)2.084 (12)2.965 (3)167 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The author acknowledges the Education Office of Anhui Province (project No. KJ2008B178).

References

First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, J., Yin, H. & Qiao, Y. (2007). Acta Cryst. E63, o3548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006a). Acta Cryst. E62, o3531–o3532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Luo, Q.-Y., Yang, S.-L. & Liu, W.-S. (2006b). Acta Cryst. E62, o4291–o4292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Xu, H.-J., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2304–o2305.  CSD CrossRef IUCr Journals Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds