metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2-{1-[2-(2-amino­ethyl­amino)ethyl­imino]­eth­yl}-5-meth­oxy­phenolato-κ4N,N′,N′′,O)copper(II)]-μ-nitrato-κ2O:O′]

aCollege of Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
*Correspondence e-mail: zhfli_sdut@yahoo.com.cn

(Received 28 June 2008; accepted 14 July 2008; online 23 July 2008)

In the title compound, [Cu(C13H20N3O2)(NO3)]n, the CuII atom is chelated by the Schiff base ligand via three N atoms and one O atom lying in an approximate square plane (r.m.s. deviation = 0.04 Å). The complex mol­ecules are linked into a polymeric chain by bridging nitrate anions, forming axial Cu—O bonds of 2.535 (6) and 2.676 (7) Å, completing a distorted octa­hedral coordination geometry. The NH groups of the ligand form hydrogen bonds to the nitrate anions.

Related literature

For related literature, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1-69.]); Huang et al. (2002[Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64-66.]); Bhadbhade & Srinivas (1993[Bhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122-6130.]); Bunce et al. (1998[Bunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Donnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179-4187.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H20N3O2)(NO3)]

  • Mr = 375.87

  • Triclinic, [P \overline 1]

  • a = 7.2012 (10) Å

  • b = 10.095 (2) Å

  • c = 11.581 (2) Å

  • α = 69.15 (2)°

  • β = 89.73 (2)°

  • γ = 89.95 (2)°

  • V = 786.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 (2) K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.569, Tmax = 0.730

  • 4891 measured reflections

  • 2739 independent reflections

  • 1896 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.160

  • S = 1.00

  • 2739 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O5i 0.90 (1) 2.15 (2) 3.013 (8) 161 (6)
N2—H1⋯O3i 0.90 (1) 2.65 (6) 3.134 (8) 115 (5)
N4—H4A⋯O2ii 0.90 2.43 3.316 (9) 168
N4—H4B⋯O3ii 0.90 2.29 3.157 (8) 162
N4—H4B⋯O4ii 0.90 2.66 3.175 (9) 118
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been studied as ligands for a long time due to instant and enduring popularity from their easy synthesis and versatility in complexes. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Garnovskii et al., 1993; Huang et al., 2002). Considerable attention has been focused on the syntheses and structures of CuII and NiII complexes. The NiII complexes with multidentate Schiff-base ligands have aroused particular interest because Ni can exhibit several oxidation states and may provide the basis of models for active sites of biological systems. On the other hand, the main attention in the optically active Schiff-base complexes is concentrated on their catalytic abilities in stereoselective synthesis (Bhadbhade & Srinivas, 1993; Bunce et al., 1998).

Related literature top

For related literature, see: Garnovskii et al. (1993); Huang et al. (2002); Bhadbhade & Srinivas (1993); Bunce et al. (1998).

Experimental top

A mixture of copper(II) nitrate hemi(pentahydrate) (1 mmol) and N-(2-hydroxy-4-methoxybenzyl)bisethylenetriamine (1 mmol) in 20 ml methanol was refluxed for two hours. The resulting solution was cooled and filtered and the filtrate was evaporated naturally at room temperature. Two day later, blue blocks were obtained with a yield of 16 %. Elemental analysis calculated: C 41.60, H 5.07, N 14.93 %; found: C 41.51, H 5.08, N 14.85 %.

Refinement top

H atoms bound to C atoms were placed in calculated positions with C—H = 0.93–0.97 Å and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms bound to N4 were also placed in calculated positions with N—H = 0.90 Å and allowed to ride with Uiso(H) = 1.2Ueq(N). Atom H1 was located in a difference Fourier map and its position was refined with the N—H distance restrained to 0.90 (1) Å and with Uiso = 0.05 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
catena-Poly[[(2-{1-[2-(2-aminoethylamino)ethylimino]ethyl}-5- methoxyphenolato-κ4N,N',N'',O)copper(II)]-µ- nitrato-κ2O:O'] top
Crystal data top
[Cu(C13H20N3O2)(NO3)]Z = 2
Mr = 375.87F(000) = 390
Triclinic, P1Dx = 1.587 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2012 (10) ÅCell parameters from 2739 reflections
b = 10.095 (2) Åθ = 2.2–25.0°
c = 11.581 (2) ŵ = 1.42 mm1
α = 69.15 (2)°T = 293 K
β = 89.73 (2)°Block, blue
γ = 89.95 (2)°0.43 × 0.28 × 0.22 mm
V = 786.8 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2739 independent reflections
Radiation source: fine-focus sealed tube1896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.569, Tmax = 0.730k = 1112
4891 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.107P)2 + 0.9393P]
where P = (Fo2 + 2Fc2)/3
2739 reflections(Δ/σ)max = 0.016
213 parametersΔρmax = 0.91 e Å3
1 restraintΔρmin = 0.42 e Å3
Crystal data top
[Cu(C13H20N3O2)(NO3)]γ = 89.95 (2)°
Mr = 375.87V = 786.8 (3) Å3
Triclinic, P1Z = 2
a = 7.2012 (10) ÅMo Kα radiation
b = 10.095 (2) ŵ = 1.42 mm1
c = 11.581 (2) ÅT = 293 K
α = 69.15 (2)°0.43 × 0.28 × 0.22 mm
β = 89.73 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2739 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1896 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.730Rint = 0.029
4891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.91 e Å3
2739 reflectionsΔρmin = 0.42 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72893 (13)0.60509 (7)0.61951 (6)0.0396 (3)
C20.7556 (9)0.9968 (6)0.1737 (5)0.0428 (13)
C30.7606 (11)1.1062 (6)0.2212 (6)0.0533 (16)
H30.76751.20010.16820.064*
C40.7551 (10)1.0737 (7)0.3470 (6)0.0511 (16)
H40.75941.14750.37720.061*
C50.7434 (8)0.9336 (6)0.4323 (5)0.0355 (12)
C60.7281 (8)0.8240 (6)0.3825 (5)0.0379 (12)
C70.7387 (9)0.8620 (6)0.2511 (6)0.0430 (14)
H70.73370.79050.21810.052*
C80.7388 (8)0.9117 (6)0.5646 (5)0.0364 (12)
C90.7516 (10)1.0377 (7)0.6051 (6)0.0503 (15)
H9A0.65181.03420.66140.075*
H9B0.74281.12350.53420.075*
H9C0.86821.03570.64550.075*
C100.7303 (11)0.7615 (7)0.7821 (5)0.0519 (16)
H10A0.65460.83070.80110.062*
H10B0.85770.77160.80460.062*
C110.6598 (11)0.6117 (8)0.8535 (6)0.0625 (19)
H11A0.68950.58500.94040.075*
H11B0.52600.60790.84560.075*
C120.6772 (13)0.3710 (8)0.8405 (7)0.0637 (19)
H12A0.54260.37190.84410.076*
H12B0.72330.31520.92190.076*
C130.7406 (11)0.3068 (7)0.7474 (6)0.0562 (17)
H13A0.87290.28810.75570.067*
H13B0.67660.21770.76200.067*
N10.7187 (7)0.7844 (5)0.6477 (4)0.0402 (11)
N20.7485 (8)0.5147 (5)0.8029 (4)0.0415 (11)
H10.871 (2)0.517 (7)0.816 (6)0.050*
N30.2005 (9)0.5570 (6)0.6866 (6)0.0550 (14)
N40.6991 (8)0.4070 (5)0.6214 (5)0.0500 (13)
H4A0.58220.39370.60060.060*
H4B0.77730.39210.56640.060*
O10.7593 (8)1.0387 (5)0.0493 (4)0.0616 (13)
O20.7129 (9)0.6914 (4)0.4468 (4)0.0633 (15)
O30.0805 (9)0.5939 (7)0.6146 (6)0.0869 (18)
O40.3604 (9)0.5871 (7)0.6519 (7)0.096 (2)
O50.1656 (9)0.4935 (8)0.7984 (6)0.098 (2)
C10.7476 (17)0.9303 (8)0.0054 (6)0.080 (3)
H1A0.85180.86740.02060.121*
H1B0.74880.97410.09380.121*
H1C0.63460.87760.02070.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0575 (5)0.0319 (4)0.0322 (4)0.0024 (3)0.0031 (3)0.0149 (3)
C20.040 (3)0.038 (3)0.048 (3)0.004 (2)0.000 (3)0.013 (3)
C30.076 (5)0.029 (3)0.046 (3)0.007 (3)0.016 (3)0.000 (2)
C40.070 (4)0.035 (3)0.048 (3)0.004 (3)0.013 (3)0.015 (3)
C50.032 (3)0.033 (3)0.048 (3)0.006 (2)0.013 (2)0.022 (2)
C60.045 (3)0.033 (3)0.035 (3)0.006 (2)0.003 (2)0.011 (2)
C70.050 (4)0.038 (3)0.048 (3)0.005 (3)0.015 (3)0.025 (3)
C80.031 (3)0.030 (3)0.051 (3)0.001 (2)0.006 (2)0.018 (2)
C90.058 (4)0.046 (3)0.060 (4)0.001 (3)0.001 (3)0.034 (3)
C100.077 (5)0.048 (3)0.037 (3)0.001 (3)0.002 (3)0.022 (3)
C110.064 (5)0.078 (5)0.053 (4)0.009 (4)0.010 (3)0.033 (4)
C120.087 (6)0.053 (4)0.053 (4)0.005 (4)0.007 (4)0.021 (3)
C130.072 (5)0.044 (4)0.053 (4)0.000 (3)0.016 (3)0.020 (3)
N10.046 (3)0.044 (3)0.038 (2)0.001 (2)0.005 (2)0.025 (2)
N20.046 (3)0.049 (3)0.032 (2)0.003 (2)0.002 (2)0.018 (2)
N30.055 (4)0.055 (3)0.057 (4)0.002 (3)0.004 (3)0.022 (3)
N40.055 (3)0.046 (3)0.049 (3)0.005 (2)0.006 (2)0.017 (2)
O10.098 (4)0.042 (2)0.040 (2)0.006 (2)0.007 (2)0.0085 (19)
O20.125 (5)0.029 (2)0.036 (2)0.005 (2)0.000 (2)0.0107 (17)
O30.065 (4)0.108 (5)0.078 (4)0.005 (3)0.020 (3)0.022 (3)
O40.060 (4)0.100 (5)0.147 (6)0.018 (3)0.040 (4)0.067 (5)
O50.071 (4)0.137 (6)0.076 (4)0.003 (4)0.010 (3)0.026 (4)
C10.155 (9)0.052 (4)0.038 (3)0.008 (5)0.003 (4)0.020 (3)
Geometric parameters (Å, º) top
Cu1—N11.952 (5)C10—C111.529 (10)
Cu1—N21.997 (5)C10—H10A0.970
Cu1—N42.004 (5)C10—H10B0.970
Cu1—O21.880 (4)C11—N21.453 (9)
Cu1—O3i2.535 (6)C11—H11A0.970
Cu1—O42.676 (7)C11—H11B0.970
C2—C71.342 (8)C12—N21.451 (9)
C2—O11.350 (7)C12—C131.511 (10)
C2—C31.398 (9)C12—H12A0.970
C3—C41.374 (9)C12—H12B0.970
C3—H30.930C13—N41.481 (9)
C4—C51.410 (8)C13—H13A0.970
C4—H40.930C13—H13B0.970
C5—C61.422 (8)N2—H10.90 (1)
C5—C81.468 (8)N3—O31.169 (9)
C6—O21.284 (7)N3—O41.220 (9)
C6—C71.433 (8)N3—O51.248 (8)
C7—H70.930N4—H4A0.900
C8—N11.310 (7)N4—H4B0.900
C8—C91.508 (8)O1—C11.449 (9)
C9—H9A0.960C1—H1A0.960
C9—H9B0.960C1—H1B0.960
C9—H9C0.960C1—H1C0.960
C10—N11.493 (7)
O2—Cu1—N193.98 (19)N2—C11—H11A110.0
O2—Cu1—N2179.4 (3)C10—C11—H11A110.0
N1—Cu1—N285.7 (2)N2—C11—H11B110.0
O2—Cu1—N495.0 (2)C10—C11—H11B110.0
N1—Cu1—N4167.3 (2)H11A—C11—H11B108.4
N2—Cu1—N485.4 (2)N2—C12—C13108.5 (6)
O2—Cu1—O493.8 (3)N2—C12—H12A110.0
N1—Cu1—O487.8 (2)C13—C12—H12A110.0
N2—Cu1—O486.7 (2)N2—C12—H12B110.0
N4—Cu1—O482.8 (2)C13—C12—H12B110.0
C7—C2—O1124.9 (5)H12A—C12—H12B108.4
C7—C2—C3119.6 (6)N4—C13—C12109.0 (6)
O1—C2—C3115.4 (5)N4—C13—H13A109.9
C4—C3—C2119.5 (6)C12—C13—H13A109.9
C4—C3—H3120.3N4—C13—H13B109.9
C2—C3—H3120.3C12—C13—H13B109.9
C3—C4—C5123.1 (6)H13A—C13—H13B108.3
C3—C4—H4118.5C8—N1—C10120.5 (5)
C5—C4—H4118.5C8—N1—Cu1126.7 (4)
C4—C5—C6116.8 (5)C10—N1—Cu1111.3 (4)
C4—C5—C8118.2 (5)C12—N2—C11118.0 (6)
C6—C5—C8124.9 (5)C12—N2—Cu1108.8 (4)
O2—C6—C5124.9 (5)C11—N2—Cu1106.1 (4)
O2—C6—C7116.7 (5)C12—N2—H1112 (4)
C5—C6—C7118.3 (5)C11—N2—H1108 (4)
C2—C7—C6122.5 (5)Cu1—N2—H1103 (4)
C2—C7—H7118.7O3—N3—O4119.1 (6)
C6—C7—H7118.7O3—N3—O5120.6 (7)
N1—C8—C5120.8 (5)O4—N3—O5120.2 (7)
N1—C8—C9119.6 (5)C13—N4—Cu1108.5 (4)
C5—C8—C9119.6 (5)C13—N4—H4A110.0
C8—C9—H9A109.5Cu1—N4—H4A110.0
C8—C9—H9B109.5C13—N4—H4B110.0
H9A—C9—H9B109.5Cu1—N4—H4B110.0
C8—C9—H9C109.5H4A—N4—H4B108.4
H9A—C9—H9C109.5C2—O1—C1117.9 (5)
H9B—C9—H9C109.5C6—O2—Cu1127.1 (4)
N1—C10—C11107.4 (5)N3—O4—Cu1167.6 (6)
N1—C10—H10A110.2O1—C1—H1A109.5
C11—C10—H10A110.2O1—C1—H1B109.5
N1—C10—H10B110.2H1A—C1—H1B109.5
C11—C10—H10B110.2O1—C1—H1C109.5
H10A—C10—H10B108.5H1A—C1—H1C109.5
N2—C11—C10108.5 (6)H1B—C1—H1C109.5
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O5i0.90 (1)2.15 (2)3.013 (8)161 (6)
N2—H1···O3i0.90 (1)2.65 (6)3.134 (8)115 (5)
N4—H4A···O2ii0.902.433.316 (9)168
N4—H4B···O3ii0.902.293.157 (8)162
N4—H4B···O4ii0.902.663.175 (9)118
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C13H20N3O2)(NO3)]
Mr375.87
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2012 (10), 10.095 (2), 11.581 (2)
α, β, γ (°)69.15 (2), 89.73 (2), 89.95 (2)
V3)786.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.569, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
4891, 2739, 1896
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.160, 1.00
No. of reflections2739
No. of parameters213
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 0.42

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O5i0.90 (1)2.15 (2)3.013 (8)161 (6)
N2—H1···O3i0.90 (1)2.65 (6)3.134 (8)115 (5)
N4—H4A···O2ii0.902.433.316 (9)168.4
N4—H4B···O3ii0.902.293.157 (8)162.4
N4—H4B···O4ii0.902.663.175 (9)117.5
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the NSFC (grant No. 20776081).

References

First citationBhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122–6130.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Donnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179–4187.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationHuang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64–66.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds