metal-organic compounds
catena-Poly[[(2-{1-[2-(2-aminoethylamino)ethylimino]ethyl}-5-methoxyphenolato-κ4N,N′,N′′,O)copper(II)]-μ-nitrato-κ2O:O′]
aCollege of Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
*Correspondence e-mail: zhfli_sdut@yahoo.com.cn
In the title compound, [Cu(C13H20N3O2)(NO3)]n, the CuII atom is chelated by the Schiff base ligand via three N atoms and one O atom lying in an approximate square plane (r.m.s. deviation = 0.04 Å). The complex molecules are linked into a polymeric chain by bridging nitrate anions, forming axial Cu—O bonds of 2.535 (6) and 2.676 (7) Å, completing a distorted octahedral coordination geometry. The NH groups of the ligand form hydrogen bonds to the nitrate anions.
Related literature
For related literature, see: Garnovskii et al. (1993); Huang et al. (2002); Bhadbhade & Srinivas (1993); Bunce et al. (1998).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808021880/bi2290sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808021880/bi2290Isup2.hkl
A mixture of copper(II) nitrate hemi(pentahydrate) (1 mmol) and N-(2-hydroxy-4-methoxybenzyl)bisethylenetriamine (1 mmol) in 20 ml methanol was refluxed for two hours. The resulting solution was cooled and filtered and the filtrate was evaporated naturally at room temperature. Two day later, blue blocks were obtained with a yield of 16 %. Elemental analysis calculated: C 41.60, H 5.07, N 14.93 %; found: C 41.51, H 5.08, N 14.85 %.
H atoms bound to C atoms were placed in calculated positions with C—H = 0.93–0.97 Å and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms bound to N4 were also placed in calculated positions with N—H = 0.90 Å and allowed to ride with Uiso(H) = 1.2Ueq(N). Atom H1 was located in a difference Fourier map and its position was refined with the N—H distance restrained to 0.90 (1) Å and with Uiso = 0.05 Å2.
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of the title compound drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms. |
[Cu(C13H20N3O2)(NO3)] | Z = 2 |
Mr = 375.87 | F(000) = 390 |
Triclinic, P1 | Dx = 1.587 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2012 (10) Å | Cell parameters from 2739 reflections |
b = 10.095 (2) Å | θ = 2.2–25.0° |
c = 11.581 (2) Å | µ = 1.42 mm−1 |
α = 69.15 (2)° | T = 293 K |
β = 89.73 (2)° | Block, blue |
γ = 89.95 (2)° | 0.43 × 0.28 × 0.22 mm |
V = 786.8 (3) Å3 |
Bruker APEXII CCD diffractometer | 2739 independent reflections |
Radiation source: fine-focus sealed tube | 1896 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −8→8 |
Tmin = 0.569, Tmax = 0.730 | k = −11→12 |
4891 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.107P)2 + 0.9393P] where P = (Fo2 + 2Fc2)/3 |
2739 reflections | (Δ/σ)max = 0.016 |
213 parameters | Δρmax = 0.91 e Å−3 |
1 restraint | Δρmin = −0.42 e Å−3 |
[Cu(C13H20N3O2)(NO3)] | γ = 89.95 (2)° |
Mr = 375.87 | V = 786.8 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2012 (10) Å | Mo Kα radiation |
b = 10.095 (2) Å | µ = 1.42 mm−1 |
c = 11.581 (2) Å | T = 293 K |
α = 69.15 (2)° | 0.43 × 0.28 × 0.22 mm |
β = 89.73 (2)° |
Bruker APEXII CCD diffractometer | 2739 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1896 reflections with I > 2σ(I) |
Tmin = 0.569, Tmax = 0.730 | Rint = 0.029 |
4891 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 1 restraint |
wR(F2) = 0.160 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.91 e Å−3 |
2739 reflections | Δρmin = −0.42 e Å−3 |
213 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.72893 (13) | 0.60509 (7) | 0.61951 (6) | 0.0396 (3) | |
C2 | 0.7556 (9) | 0.9968 (6) | 0.1737 (5) | 0.0428 (13) | |
C3 | 0.7606 (11) | 1.1062 (6) | 0.2212 (6) | 0.0533 (16) | |
H3 | 0.7675 | 1.2001 | 0.1682 | 0.064* | |
C4 | 0.7551 (10) | 1.0737 (7) | 0.3470 (6) | 0.0511 (16) | |
H4 | 0.7594 | 1.1475 | 0.3772 | 0.061* | |
C5 | 0.7434 (8) | 0.9336 (6) | 0.4323 (5) | 0.0355 (12) | |
C6 | 0.7281 (8) | 0.8240 (6) | 0.3825 (5) | 0.0379 (12) | |
C7 | 0.7387 (9) | 0.8620 (6) | 0.2511 (6) | 0.0430 (14) | |
H7 | 0.7337 | 0.7905 | 0.2181 | 0.052* | |
C8 | 0.7388 (8) | 0.9117 (6) | 0.5646 (5) | 0.0364 (12) | |
C9 | 0.7516 (10) | 1.0377 (7) | 0.6051 (6) | 0.0503 (15) | |
H9A | 0.6518 | 1.0342 | 0.6614 | 0.075* | |
H9B | 0.7428 | 1.1235 | 0.5342 | 0.075* | |
H9C | 0.8682 | 1.0357 | 0.6455 | 0.075* | |
C10 | 0.7303 (11) | 0.7615 (7) | 0.7821 (5) | 0.0519 (16) | |
H10A | 0.6546 | 0.8307 | 0.8011 | 0.062* | |
H10B | 0.8577 | 0.7716 | 0.8046 | 0.062* | |
C11 | 0.6598 (11) | 0.6117 (8) | 0.8535 (6) | 0.0625 (19) | |
H11A | 0.6895 | 0.5850 | 0.9404 | 0.075* | |
H11B | 0.5260 | 0.6079 | 0.8456 | 0.075* | |
C12 | 0.6772 (13) | 0.3710 (8) | 0.8405 (7) | 0.0637 (19) | |
H12A | 0.5426 | 0.3719 | 0.8441 | 0.076* | |
H12B | 0.7233 | 0.3152 | 0.9219 | 0.076* | |
C13 | 0.7406 (11) | 0.3068 (7) | 0.7474 (6) | 0.0562 (17) | |
H13A | 0.8729 | 0.2881 | 0.7557 | 0.067* | |
H13B | 0.6766 | 0.2177 | 0.7620 | 0.067* | |
N1 | 0.7187 (7) | 0.7844 (5) | 0.6477 (4) | 0.0402 (11) | |
N2 | 0.7485 (8) | 0.5147 (5) | 0.8029 (4) | 0.0415 (11) | |
H1 | 0.871 (2) | 0.517 (7) | 0.816 (6) | 0.050* | |
N3 | 0.2005 (9) | 0.5570 (6) | 0.6866 (6) | 0.0550 (14) | |
N4 | 0.6991 (8) | 0.4070 (5) | 0.6214 (5) | 0.0500 (13) | |
H4A | 0.5822 | 0.3937 | 0.6006 | 0.060* | |
H4B | 0.7773 | 0.3921 | 0.5664 | 0.060* | |
O1 | 0.7593 (8) | 1.0387 (5) | 0.0493 (4) | 0.0616 (13) | |
O2 | 0.7129 (9) | 0.6914 (4) | 0.4468 (4) | 0.0633 (15) | |
O3 | 0.0805 (9) | 0.5939 (7) | 0.6146 (6) | 0.0869 (18) | |
O4 | 0.3604 (9) | 0.5871 (7) | 0.6519 (7) | 0.096 (2) | |
O5 | 0.1656 (9) | 0.4935 (8) | 0.7984 (6) | 0.098 (2) | |
C1 | 0.7476 (17) | 0.9303 (8) | −0.0054 (6) | 0.080 (3) | |
H1A | 0.8518 | 0.8674 | 0.0206 | 0.121* | |
H1B | 0.7488 | 0.9741 | −0.0938 | 0.121* | |
H1C | 0.6346 | 0.8776 | 0.0207 | 0.121* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0575 (5) | 0.0319 (4) | 0.0322 (4) | −0.0024 (3) | 0.0031 (3) | −0.0149 (3) |
C2 | 0.040 (3) | 0.038 (3) | 0.048 (3) | −0.004 (2) | 0.000 (3) | −0.013 (3) |
C3 | 0.076 (5) | 0.029 (3) | 0.046 (3) | 0.007 (3) | −0.016 (3) | 0.000 (2) |
C4 | 0.070 (4) | 0.035 (3) | 0.048 (3) | −0.004 (3) | 0.013 (3) | −0.015 (3) |
C5 | 0.032 (3) | 0.033 (3) | 0.048 (3) | −0.006 (2) | 0.013 (2) | −0.022 (2) |
C6 | 0.045 (3) | 0.033 (3) | 0.035 (3) | −0.006 (2) | −0.003 (2) | −0.011 (2) |
C7 | 0.050 (4) | 0.038 (3) | 0.048 (3) | −0.005 (3) | 0.015 (3) | −0.025 (3) |
C8 | 0.031 (3) | 0.030 (3) | 0.051 (3) | 0.001 (2) | 0.006 (2) | −0.018 (2) |
C9 | 0.058 (4) | 0.046 (3) | 0.060 (4) | −0.001 (3) | −0.001 (3) | −0.034 (3) |
C10 | 0.077 (5) | 0.048 (3) | 0.037 (3) | 0.001 (3) | 0.002 (3) | −0.022 (3) |
C11 | 0.064 (5) | 0.078 (5) | 0.053 (4) | −0.009 (4) | 0.010 (3) | −0.033 (4) |
C12 | 0.087 (6) | 0.053 (4) | 0.053 (4) | −0.005 (4) | −0.007 (4) | −0.021 (3) |
C13 | 0.072 (5) | 0.044 (4) | 0.053 (4) | 0.000 (3) | 0.016 (3) | −0.020 (3) |
N1 | 0.046 (3) | 0.044 (3) | 0.038 (2) | −0.001 (2) | 0.005 (2) | −0.025 (2) |
N2 | 0.046 (3) | 0.049 (3) | 0.032 (2) | −0.003 (2) | 0.002 (2) | −0.018 (2) |
N3 | 0.055 (4) | 0.055 (3) | 0.057 (4) | −0.002 (3) | 0.004 (3) | −0.022 (3) |
N4 | 0.055 (3) | 0.046 (3) | 0.049 (3) | −0.005 (2) | 0.006 (2) | −0.017 (2) |
O1 | 0.098 (4) | 0.042 (2) | 0.040 (2) | −0.006 (2) | −0.007 (2) | −0.0085 (19) |
O2 | 0.125 (5) | 0.029 (2) | 0.036 (2) | −0.005 (2) | 0.000 (2) | −0.0107 (17) |
O3 | 0.065 (4) | 0.108 (5) | 0.078 (4) | −0.005 (3) | 0.020 (3) | −0.022 (3) |
O4 | 0.060 (4) | 0.100 (5) | 0.147 (6) | 0.018 (3) | −0.040 (4) | −0.067 (5) |
O5 | 0.071 (4) | 0.137 (6) | 0.076 (4) | 0.003 (4) | −0.010 (3) | −0.026 (4) |
C1 | 0.155 (9) | 0.052 (4) | 0.038 (3) | −0.008 (5) | −0.003 (4) | −0.020 (3) |
Cu1—N1 | 1.952 (5) | C10—C11 | 1.529 (10) |
Cu1—N2 | 1.997 (5) | C10—H10A | 0.970 |
Cu1—N4 | 2.004 (5) | C10—H10B | 0.970 |
Cu1—O2 | 1.880 (4) | C11—N2 | 1.453 (9) |
Cu1—O3i | 2.535 (6) | C11—H11A | 0.970 |
Cu1—O4 | 2.676 (7) | C11—H11B | 0.970 |
C2—C7 | 1.342 (8) | C12—N2 | 1.451 (9) |
C2—O1 | 1.350 (7) | C12—C13 | 1.511 (10) |
C2—C3 | 1.398 (9) | C12—H12A | 0.970 |
C3—C4 | 1.374 (9) | C12—H12B | 0.970 |
C3—H3 | 0.930 | C13—N4 | 1.481 (9) |
C4—C5 | 1.410 (8) | C13—H13A | 0.970 |
C4—H4 | 0.930 | C13—H13B | 0.970 |
C5—C6 | 1.422 (8) | N2—H1 | 0.90 (1) |
C5—C8 | 1.468 (8) | N3—O3 | 1.169 (9) |
C6—O2 | 1.284 (7) | N3—O4 | 1.220 (9) |
C6—C7 | 1.433 (8) | N3—O5 | 1.248 (8) |
C7—H7 | 0.930 | N4—H4A | 0.900 |
C8—N1 | 1.310 (7) | N4—H4B | 0.900 |
C8—C9 | 1.508 (8) | O1—C1 | 1.449 (9) |
C9—H9A | 0.960 | C1—H1A | 0.960 |
C9—H9B | 0.960 | C1—H1B | 0.960 |
C9—H9C | 0.960 | C1—H1C | 0.960 |
C10—N1 | 1.493 (7) | ||
O2—Cu1—N1 | 93.98 (19) | N2—C11—H11A | 110.0 |
O2—Cu1—N2 | 179.4 (3) | C10—C11—H11A | 110.0 |
N1—Cu1—N2 | 85.7 (2) | N2—C11—H11B | 110.0 |
O2—Cu1—N4 | 95.0 (2) | C10—C11—H11B | 110.0 |
N1—Cu1—N4 | 167.3 (2) | H11A—C11—H11B | 108.4 |
N2—Cu1—N4 | 85.4 (2) | N2—C12—C13 | 108.5 (6) |
O2—Cu1—O4 | 93.8 (3) | N2—C12—H12A | 110.0 |
N1—Cu1—O4 | 87.8 (2) | C13—C12—H12A | 110.0 |
N2—Cu1—O4 | 86.7 (2) | N2—C12—H12B | 110.0 |
N4—Cu1—O4 | 82.8 (2) | C13—C12—H12B | 110.0 |
C7—C2—O1 | 124.9 (5) | H12A—C12—H12B | 108.4 |
C7—C2—C3 | 119.6 (6) | N4—C13—C12 | 109.0 (6) |
O1—C2—C3 | 115.4 (5) | N4—C13—H13A | 109.9 |
C4—C3—C2 | 119.5 (6) | C12—C13—H13A | 109.9 |
C4—C3—H3 | 120.3 | N4—C13—H13B | 109.9 |
C2—C3—H3 | 120.3 | C12—C13—H13B | 109.9 |
C3—C4—C5 | 123.1 (6) | H13A—C13—H13B | 108.3 |
C3—C4—H4 | 118.5 | C8—N1—C10 | 120.5 (5) |
C5—C4—H4 | 118.5 | C8—N1—Cu1 | 126.7 (4) |
C4—C5—C6 | 116.8 (5) | C10—N1—Cu1 | 111.3 (4) |
C4—C5—C8 | 118.2 (5) | C12—N2—C11 | 118.0 (6) |
C6—C5—C8 | 124.9 (5) | C12—N2—Cu1 | 108.8 (4) |
O2—C6—C5 | 124.9 (5) | C11—N2—Cu1 | 106.1 (4) |
O2—C6—C7 | 116.7 (5) | C12—N2—H1 | 112 (4) |
C5—C6—C7 | 118.3 (5) | C11—N2—H1 | 108 (4) |
C2—C7—C6 | 122.5 (5) | Cu1—N2—H1 | 103 (4) |
C2—C7—H7 | 118.7 | O3—N3—O4 | 119.1 (6) |
C6—C7—H7 | 118.7 | O3—N3—O5 | 120.6 (7) |
N1—C8—C5 | 120.8 (5) | O4—N3—O5 | 120.2 (7) |
N1—C8—C9 | 119.6 (5) | C13—N4—Cu1 | 108.5 (4) |
C5—C8—C9 | 119.6 (5) | C13—N4—H4A | 110.0 |
C8—C9—H9A | 109.5 | Cu1—N4—H4A | 110.0 |
C8—C9—H9B | 109.5 | C13—N4—H4B | 110.0 |
H9A—C9—H9B | 109.5 | Cu1—N4—H4B | 110.0 |
C8—C9—H9C | 109.5 | H4A—N4—H4B | 108.4 |
H9A—C9—H9C | 109.5 | C2—O1—C1 | 117.9 (5) |
H9B—C9—H9C | 109.5 | C6—O2—Cu1 | 127.1 (4) |
N1—C10—C11 | 107.4 (5) | N3—O4—Cu1 | 167.6 (6) |
N1—C10—H10A | 110.2 | O1—C1—H1A | 109.5 |
C11—C10—H10A | 110.2 | O1—C1—H1B | 109.5 |
N1—C10—H10B | 110.2 | H1A—C1—H1B | 109.5 |
C11—C10—H10B | 110.2 | O1—C1—H1C | 109.5 |
H10A—C10—H10B | 108.5 | H1A—C1—H1C | 109.5 |
N2—C11—C10 | 108.5 (6) | H1B—C1—H1C | 109.5 |
Symmetry code: (i) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···O5i | 0.90 (1) | 2.15 (2) | 3.013 (8) | 161 (6) |
N2—H1···O3i | 0.90 (1) | 2.65 (6) | 3.134 (8) | 115 (5) |
N4—H4A···O2ii | 0.90 | 2.43 | 3.316 (9) | 168 |
N4—H4B···O3ii | 0.90 | 2.29 | 3.157 (8) | 162 |
N4—H4B···O4ii | 0.90 | 2.66 | 3.175 (9) | 118 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C13H20N3O2)(NO3)] |
Mr | 375.87 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.2012 (10), 10.095 (2), 11.581 (2) |
α, β, γ (°) | 69.15 (2), 89.73 (2), 89.95 (2) |
V (Å3) | 786.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.42 |
Crystal size (mm) | 0.43 × 0.28 × 0.22 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.569, 0.730 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4891, 2739, 1896 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.160, 1.00 |
No. of reflections | 2739 |
No. of parameters | 213 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.91, −0.42 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···O5i | 0.90 (1) | 2.15 (2) | 3.013 (8) | 161 (6) |
N2—H1···O3i | 0.90 (1) | 2.65 (6) | 3.134 (8) | 115 (5) |
N4—H4A···O2ii | 0.90 | 2.43 | 3.316 (9) | 168.4 |
N4—H4B···O3ii | 0.90 | 2.29 | 3.157 (8) | 162.4 |
N4—H4B···O4ii | 0.90 | 2.66 | 3.175 (9) | 117.5 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the NSFC (grant No. 20776081).
References
Bhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122–6130. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bunce, S., Cross, R. J., Farrugia, L. J., Kunchandy, S., Meason, L. L., Muir, K. W., Donnell, M., Peacock, R. D., Stirling, D. & Teat, S. J. (1998). Polyhedron, 17, 4179–4187. Web of Science CSD CrossRef CAS Google Scholar
Garnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1–69. CrossRef CAS Web of Science Google Scholar
Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64–66. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases have been studied as ligands for a long time due to instant and enduring popularity from their easy synthesis and versatility in complexes. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Garnovskii et al., 1993; Huang et al., 2002). Considerable attention has been focused on the syntheses and structures of CuII and NiII complexes. The NiII complexes with multidentate Schiff-base ligands have aroused particular interest because Ni can exhibit several oxidation states and may provide the basis of models for active sites of biological systems. On the other hand, the main attention in the optically active Schiff-base complexes is concentrated on their catalytic abilities in stereoselective synthesis (Bhadbhade & Srinivas, 1993; Bunce et al., 1998).