organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­methyl-2,2′-bipyridinium dichloride

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 10 July 2008; accepted 18 August 2008; online 23 August 2008)

In the title compound, C12H14N22+·2Cl, the 4,4′-dimethyl-2,2′-bipyridinium cation is essentially planar (r.m.s. deviation for all non-H atoms = 0.004 Å) and is located on a crystallographic inversion centre. The cations and chloride anions lie in planes parallel to (111) and are connected by N—H⋯Cl and C—H⋯Cl hydrogen bonds.

Related literature

For related literature, see: Eckensberger (2006[Eckensberger, U. D. (2006). Diploma Thesis, Frankfurt.]); Scheibitz et al. (2005[Scheibitz, M., Heilmann, J. B., Winter, R. F., Bolte, M., Bats, J. W. & Wagner, M. (2005). Dalton Trans. pp. 159-170.]). For structures containing the 4,4′-dimethyl-2,2′-bipyridinium cation, see: Linden et al. (1999[Linden, A., James, M. A., Millikan, M. B., Kivlighon, L. M., Petridis, A. & James, B. D. (1999). Inorg. Chim. Acta, 284, 215-222.]); Willett et al. (2001[Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342-4352.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N22+·2Cl

  • Mr = 257.15

  • Triclinic, [P \overline 1]

  • a = 5.1999 (10) Å

  • b = 7.2705 (13) Å

  • c = 8.4785 (15) Å

  • α = 93.877 (15)°

  • β = 102.349 (15)°

  • γ = 97.759 (15)°

  • V = 308.71 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 173 (2) K

  • 0.21 × 0.21 × 0.14 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.902, Tmax = 0.933

  • 3382 measured reflections

  • 1147 independent reflections

  • 926 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.079

  • S = 0.97

  • 1147 reflections

  • 78 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.86 (3) 2.17 (3) 3.009 (2) 165 (3)
C2—H2⋯Cl1i 0.95 2.75 3.496 (2) 136
C5—H5⋯Cl1ii 0.95 2.62 3.554 (2) 169
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we have synthesized the dimeric diferrocenylboryl cation I (see Fig. 3) (Scheibitz et al., 2005). Now we are interested to prepare the cationic dinuclear complex with a pentamethylcyclopentadienyl ring III. In an attempt to synthesize III from II (Eckensberger, 2006) and 4,4'-dimethyl-2,2'-bipyridine, we obtained the title compound as a by-product. X-ray quality crystals were grown from CD3CN in an NMR tube at ambient temperature.

The title compound crystallizes with one formula unit in the unit cell. The cation is located on a crystallographic inversion centre. It is essentially planar (r.m.s. deviation for all non-H atoms 0.004 Å). The chloride anions deviate by just 0.072 (3) Å from this plane. These planes are parallel to the (111) plane. In a plane, cations and anions are connected by N—H···Cl and C—H···Cl hydrogen bonds (Fig. 2).

Related literature top

For related literature, see: Eckensberger (2006); Scheibitz et al. (2005). For structures containing the 4,4'-dimethyl-2,2'-bipyridinium cation, see: Linden et al. (1999); Willett et al. (2001).

Experimental top

In an attempt to synthesize complex III (Eckensberger, 2006) from II (0.156 g, 0.32 mmol) with 4,4'-dimethyl-2,2'-bipyridine (0.065 g, 0.35 mmol) in 5 ml acetonitrile, the title compound was obtained as a by-product. X-ray quality crystals were grown from CD3CN in an NMR tube at ambient temperature after several days.

Refinement top

H atoms were geometrically positioned with Caromatic—H = 0.95 Å and Cmethyl—H 0.98 Å, and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(Cmethyl)]. The methyl group was allowed to rotate about its local threefold axis. The H atom bonded to N was freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii. Hydrogen bonds are drawn as dashed lines. Symmetry operator for generating equivalent atoms: 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed perpendicular to the (1 1 1) plane. Hydrogen bonds are indicated as dashed lines.
[Figure 3] Fig. 3. Reaction scheme.
4,4'-Dimethyl-2,2'-bipyridinium dichloride top
Crystal data top
C12H14N22+·2(Cl)Z = 1
Mr = 257.15F(000) = 134
Triclinic, P1Dx = 1.383 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1999 (10) ÅCell parameters from 3157 reflections
b = 7.2705 (13) Åθ = 3.6–25.8°
c = 8.4785 (15) ŵ = 0.50 mm1
α = 93.877 (15)°T = 173 K
β = 102.349 (15)°Block, colourless
γ = 97.759 (15)°0.21 × 0.21 × 0.14 mm
V = 308.71 (10) Å3
Data collection top
Stoe IPDSII two-circle
diffractometer
1147 independent reflections
Radiation source: fine-focus sealed tube926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 25.6°, θmin = 3.6°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 66
Tmin = 0.902, Tmax = 0.933k = 88
3382 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0407P)2]
where P = (Fo2 + 2Fc2)/3
1147 reflections(Δ/σ)max < 0.001
78 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H14N22+·2(Cl)γ = 97.759 (15)°
Mr = 257.15V = 308.71 (10) Å3
Triclinic, P1Z = 1
a = 5.1999 (10) ÅMo Kα radiation
b = 7.2705 (13) ŵ = 0.50 mm1
c = 8.4785 (15) ÅT = 173 K
α = 93.877 (15)°0.21 × 0.21 × 0.14 mm
β = 102.349 (15)°
Data collection top
Stoe IPDSII two-circle
diffractometer
1147 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
926 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.933Rint = 0.058
3382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.23 e Å3
1147 reflectionsΔρmin = 0.23 e Å3
78 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.97517 (12)0.22553 (7)0.26756 (7)0.02679 (18)
N10.6763 (4)0.3002 (2)0.5264 (2)0.0219 (4)
H10.749 (6)0.296 (4)0.444 (4)0.047 (8)*
C10.5194 (4)0.4274 (2)0.5570 (2)0.0195 (4)
C20.7255 (5)0.1636 (3)0.6223 (3)0.0254 (5)
H20.83620.07740.59670.031*
C30.6195 (5)0.1455 (3)0.7564 (3)0.0273 (5)
H30.65680.04830.82320.033*
C40.4553 (4)0.2725 (3)0.7936 (3)0.0223 (5)
C50.4078 (4)0.4121 (3)0.6904 (2)0.0210 (5)
H50.29570.49880.71250.025*
C60.3345 (5)0.2555 (3)0.9383 (3)0.0287 (5)
H6A0.23370.35850.94880.043*
H6B0.47610.26051.03620.043*
H6C0.21470.13650.92440.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0285 (3)0.0269 (3)0.0288 (3)0.00927 (19)0.0113 (2)0.00399 (18)
N10.0236 (10)0.0228 (8)0.0223 (10)0.0070 (7)0.0082 (8)0.0064 (7)
C10.0204 (11)0.0195 (9)0.0181 (10)0.0029 (8)0.0031 (8)0.0028 (8)
C20.0262 (12)0.0238 (9)0.0293 (12)0.0086 (8)0.0081 (10)0.0084 (8)
C30.0284 (13)0.0244 (10)0.0295 (12)0.0066 (9)0.0032 (10)0.0110 (9)
C40.0231 (11)0.0217 (9)0.0204 (10)0.0012 (8)0.0035 (9)0.0039 (8)
C50.0243 (12)0.0196 (9)0.0200 (10)0.0061 (8)0.0043 (9)0.0049 (8)
C60.0350 (14)0.0301 (11)0.0218 (11)0.0040 (10)0.0076 (10)0.0075 (9)
Geometric parameters (Å, º) top
N1—C21.342 (3)C3—H30.950
N1—C11.360 (2)C4—C51.397 (3)
N1—H10.86 (3)C4—C61.498 (3)
C1—C51.382 (3)C5—H50.950
C1—C1i1.484 (4)C6—H6A0.980
C2—C31.372 (3)C6—H6B0.980
C2—H20.950C6—H6C0.980
C3—C41.404 (3)
C2—N1—C1121.9 (2)C5—C4—C3117.6 (2)
C2—N1—H1113.5 (19)C5—C4—C6121.92 (17)
C1—N1—H1124.6 (19)C3—C4—C6120.46 (19)
N1—C1—C5118.08 (18)C1—C5—C4121.78 (17)
N1—C1—C1i117.0 (2)C1—C5—H5119.1
C5—C1—C1i124.9 (2)C4—C5—H5119.1
N1—C2—C3121.46 (17)C4—C6—H6A109.5
N1—C2—H2119.3C4—C6—H6B109.5
C3—C2—H2119.3H6A—C6—H6B109.5
C2—C3—C4119.17 (19)C4—C6—H6C109.5
C2—C3—H3120.4H6A—C6—H6C109.5
C4—C3—H3120.4H6B—C6—H6C109.5
C2—N1—C1—C50.5 (3)C2—C3—C4—C6179.4 (2)
C2—N1—C1—C1i179.7 (2)N1—C1—C5—C40.9 (3)
C1—N1—C2—C30.0 (3)C1i—C1—C5—C4179.3 (2)
N1—C2—C3—C40.2 (3)C3—C4—C5—C10.7 (3)
C2—C3—C4—C50.1 (3)C6—C4—C5—C1180.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.86 (3)2.17 (3)3.009 (2)165 (3)
C2—H2···Cl1ii0.952.753.496 (2)136
C5—H5···Cl1i0.952.623.554 (2)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H14N22+·2(Cl)
Mr257.15
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.1999 (10), 7.2705 (13), 8.4785 (15)
α, β, γ (°)93.877 (15), 102.349 (15), 97.759 (15)
V3)308.71 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.21 × 0.21 × 0.14
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.902, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
3382, 1147, 926
Rint0.058
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 0.97
No. of reflections1147
No. of parameters78
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.86 (3)2.17 (3)3.009 (2)165 (3)
C2—H2···Cl1i0.952.753.496 (2)136
C5—H5···Cl1ii0.952.623.554 (2)169
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEckensberger, U. D. (2006). Diploma Thesis, Frankfurt.  Google Scholar
First citationLinden, A., James, M. A., Millikan, M. B., Kivlighon, L. M., Petridis, A. & James, B. D. (1999). Inorg. Chim. Acta, 284, 215–222.  Web of Science CSD CrossRef CAS Google Scholar
First citationScheibitz, M., Heilmann, J. B., Winter, R. F., Bolte, M., Bats, J. W. & Wagner, M. (2005). Dalton Trans. pp. 159–170.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWillett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds