organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­chloro­catechol

aState Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
*Correspondence e-mail: caoxplzu@163.com

(Received 24 April 2008; accepted 4 August 2008; online 13 August 2008)

The title compound, C6H4Cl2O2, exhibits a two-dimensional supra­molecular hydrogen-bonded network and forms a three-dimensional network supra­molecular structure via hydrogen bonds and ππ stacking of benzene rings. The ππ inter­actions are between the benzene rings of centrosymmetrically related mol­ecules, with centroid–centroid distances of 3.7676 (13) and 3.7107 (13) Å.

Related literature

For related literature, see: Haigler et al. (1988[Haigler, B. E., Nishino, S. F. & Spain, J. C. (1988). Appl. Environ. Microbiol. 54, 294-301.]); Kirsh & Stan (1994[Kirsh, N. H. & Stan, H. J. (1994). Chemosphere, 28, 131-137.]); Nishizawa & Satoh (1975a[Nishizawa, K. & Satoh, J. Y. (1975a). Bull. Chem. Soc. Jpn, 48, 1276-1279.],b[Nishizawa, K. & Satoh, J. Y. (1975b). Bull. Chem. Soc. Jpn, 48, 2215-2216.]); Sander et al. (1991[Sander, P., Wittich, R. M., Fortnagel, P., Wilkes, H. & Francke, W. (1991). Appl. Environ. Microbiol. 57, 1430-1440.]); Schraa et al. (1986[Schraa, G., Boone, M. L., Jetten, M. S. M., Van Neerven, A. R. W., Colberg, P. J. & Zehnder, A. J. B. (1986). Appl. Environ. Microbiol. 52, 1374-1381.]); Spiess et al. (1995[Spiess, E., Sommer, C. & Gorisch, H. (1995). Appl. Environ. Microbiol. 61, 3884-3888.]); Spain et al. (1989[Spain, J. C., Zylstra, G. J., Blake, C. K. & Gibson, D. T. (1989). Appl. Environ. Microbiol. 55, 2648-2652.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4Cl2O2

  • Mr = 178.99

  • Monoclinic, P 21 /c

  • a = 7.4411 (7) Å

  • b = 10.1283 (10) Å

  • c = 10.6448 (8) Å

  • β = 119.903 (5)°

  • V = 695.45 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 296 K

  • 0.36 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.748, Tmax = 0.882

  • 3531 measured reflections

  • 1243 independent reflections

  • 1117 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.118

  • S = 1.01

  • 1243 reflections

  • 93 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 2.19 2.6391 (17) 115
O1—H1⋯Cl1i 0.82 2.76 3.3980 (16) 137
O2—H2⋯Cl2 0.82 2.61 3.0597 (13) 116
O2—H2⋯O1ii 0.82 2.13 2.8969 (19) 155
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compound 3,6-dichlorocatechol, (I), was a common metabolite in the microbial aerobic degradation of 1,4-dichlorobenzene. Because 1,4-dichlorobenzene was too stable to be degraded by photochemistry, biodegradation of this compound was an only way that it was eliminated from enviroment. 3,6-Dichlorocatechol has been reported to be an important intermediate in this process (Haigler et al., 1988; Schraa et al., 1986; Spain et al., 1989; Sander et al., 1991; Spiess et al., 1995). So the title compound (I) could be used to optimize the biodegradation process of 1,4-dichlorobenzene (Kirsh et al., 1994). It would be of great important significance in the protection of our surrounding and public health. Herein, we report the synthesis and structure of this compound, namely 3,6-dichlorocatechol. As shown in Fig.1, there are two hydroxyl groups in the phenyl ring. In the formation of these hydrogen bonds, one acts as donor, the other as acceptor. A two-dimensional supramolecular network was formed by O—H···Cl and O—H···O intermolecular hydrogen bonds (Table 1) [Symmetry codes (i): -x+2, y-1/2, -z+3/2; (ii): x, -y+3/2, z-1/2], and there are also weak π-π interactions between the centrosymmetrically related phenyl rings at (x, y, z) and (-x, -y, -z+1), (-x+1, -y, -z+1) with a centroid-to-centroid distance of 3.7676 (13)Å and 3.7107 (13)Å, respectively (Fig. 2).

Related literature top

For related literature, see: Haigler et al. (1988); Kirsh & Stan (1994); Nishizawa & Satoh (1975a,b); Sander et al. (1991); Schraa et al. (1986); Spiess et al. (1995); Spain et al. (1989).

Experimental top

3,6,6-Tricholor-2-hydroxycyclohex-2-en-1-one (26 g, 0.12 mol) was treated with Li2CO3 (13.4 g, 0.18 mol) in DMF to give the title compound (I). (18.4 g) in 86% yield (Nishizawa & Satoh, 1975a,b). m. p. 108-109°C; 1H NMR (CDCl3, 300 MHz) δ: 5.79 (s, 2H), 6.86 (d, J = 2.4 Hz, 2H); 13 C NMR (CDCl3, 75 MHz) δ: 118.7, 120.8, 140.6; MS (ESI) m/z (%): 178 (M+, 95), 180 (49), 182 (8).

Refinement top

All H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å and O—H = 0.82 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The three-dimensional structure by molecular packing, showing the intermolecular hydrogen bonds as yellow dashed lines [Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) x, -y+3/2, z-1/2], and π-π interactions as black dashed lines.
3,6-dichlorobenzene-1,2-diol top
Crystal data top
C6H4Cl2O2F(000) = 360
Mr = 178.99Dx = 1.710 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2193 reflections
a = 7.4411 (7) Åθ = 2.9–26.4°
b = 10.1283 (10) ŵ = 0.86 mm1
c = 10.6448 (8) ÅT = 296 K
β = 119.903 (5)°Block, colorless
V = 695.45 (11) Å30.36 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1243 independent reflections
Radiation source: fine-focus sealed tube1117 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 88
Tmin = 0.748, Tmax = 0.882k = 912
3531 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.01P)2]
where P = (Fo2 + 2Fc2)/3
1243 reflections(Δ/σ)max = 0.001
93 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C6H4Cl2O2V = 695.45 (11) Å3
Mr = 178.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4411 (7) ŵ = 0.86 mm1
b = 10.1283 (10) ÅT = 296 K
c = 10.6448 (8) Å0.36 × 0.17 × 0.15 mm
β = 119.903 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1243 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1117 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.882Rint = 0.017
3531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
1243 reflectionsΔρmin = 0.34 e Å3
93 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84969 (7)1.04043 (6)0.81747 (4)0.0483 (3)
Cl20.64593 (7)0.99288 (7)0.17713 (4)0.0529 (3)
O10.8451 (2)0.79625 (12)0.66807 (12)0.0487 (4)
H10.85780.73310.62490.073*
O20.7560 (2)0.76889 (12)0.39645 (12)0.0490 (4)
H20.75700.77080.31980.074*
C10.7904 (3)1.02895 (16)0.63843 (18)0.0344 (4)
C20.7954 (2)0.90633 (16)0.58289 (15)0.0335 (4)
C30.7515 (2)0.89485 (16)0.44037 (17)0.0330 (4)
C40.7012 (3)1.00694 (18)0.35485 (17)0.0356 (4)
C50.6955 (3)1.13066 (18)0.41095 (17)0.0433 (4)
H50.66191.20560.35300.052*
C60.7397 (3)1.14090 (18)0.55181 (19)0.0415 (4)
H60.73591.22300.58960.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0647 (4)0.0507 (4)0.0356 (4)0.00327 (18)0.0296 (3)0.00797 (16)
Cl20.0633 (4)0.0666 (5)0.0307 (4)0.0071 (2)0.0248 (3)0.00907 (18)
O10.0832 (10)0.0343 (7)0.0401 (7)0.0122 (6)0.0393 (7)0.0089 (5)
O20.0835 (10)0.0351 (7)0.0414 (7)0.0021 (6)0.0409 (7)0.0039 (5)
C10.0382 (9)0.0370 (9)0.0307 (8)0.0029 (6)0.0192 (7)0.0042 (6)
C20.0394 (8)0.0323 (9)0.0317 (8)0.0010 (7)0.0199 (7)0.0053 (6)
C30.0373 (8)0.0334 (9)0.0298 (7)0.0025 (6)0.0177 (6)0.0020 (6)
C40.0360 (9)0.0445 (10)0.0276 (8)0.0007 (7)0.0169 (7)0.0042 (7)
C50.0488 (10)0.0354 (9)0.0450 (9)0.0037 (7)0.0230 (8)0.0100 (7)
C60.0508 (10)0.0309 (9)0.0429 (8)0.0009 (7)0.0234 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1—H10.8200C3—O21.365 (2)
O2—H20.8200C3—C41.385 (2)
C1—C21.384 (2)C4—C51.398 (2)
C1—C61.390 (2)C4—Cl21.7299 (16)
C1—Cl11.7326 (17)C5—C61.369 (3)
C2—O11.3666 (18)C5—H50.9300
C2—C31.388 (2)C6—H60.9300
O1—C2—C1120.31 (13)C3—C4—C5120.65 (15)
O1—C2—C3119.68 (14)C3—C4—Cl2119.36 (13)
O2—C3—C4125.85 (14)C4—C3—C2119.27 (15)
O2—C3—C2114.84 (14)C4—C5—H5120.2
C1—C2—C3120.02 (14)C5—C4—Cl2119.98 (13)
C1—C6—H6119.9C5—C6—C1120.16 (16)
C2—O1—H1109.5C5—C6—H6119.9
C2—C1—C6120.32 (15)C6—C5—C4119.59 (15)
C2—C1—Cl1118.94 (12)C6—C1—Cl1120.75 (13)
C3—O2—H2109.5C6—C5—H5120.2
Cl1—C1—C2—O10.4 (2)C1—C2—C3—C40.5 (2)
Cl1—C1—C2—C3179.06 (12)C2—C1—C6—C50.3 (3)
Cl1—C1—C6—C5179.23 (13)C2—C3—C4—C50.3 (2)
Cl2—C4—C5—C6179.92 (13)C2—C3—C4—Cl2179.90 (12)
O1—C2—C3—O22.1 (2)C3—C4—C5—C60.1 (3)
O1—C2—C3—C4179.98 (15)C4—C5—C6—C10.2 (3)
O2—C3—C4—C5177.97 (16)C6—C1—C2—O1179.97 (15)
O2—C3—C4—Cl22.3 (2)C6—C1—C2—C30.5 (2)
C1—C2—C3—O2178.41 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.192.6391 (17)115
O1—H1···Cl1i0.822.763.3980 (16)137
O2—H2···Cl20.822.613.0597 (13)116
O2—H2···O1ii0.822.132.8969 (19)155
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H4Cl2O2
Mr178.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4411 (7), 10.1283 (10), 10.6448 (8)
β (°) 119.903 (5)
V3)695.45 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.36 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.748, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
3531, 1243, 1117
Rint0.017
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.118, 1.01
No. of reflections1243
No. of parameters93
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.192.6391 (17)115
O1—H1···Cl1i0.822.763.3980 (16)137
O2—H2···Cl20.822.613.0597 (13)116
O2—H2···O1ii0.822.132.8969 (19)155
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (20621091). The authors are also grateful to Professor Yu Tang, Lanzhou University, for her helpful guidance in the preparation of the manuscript.

References

First citationBruker (1997). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaigler, B. E., Nishino, S. F. & Spain, J. C. (1988). Appl. Environ. Microbiol. 54, 294–301.  CAS PubMed Web of Science Google Scholar
First citationKirsh, N. H. & Stan, H. J. (1994). Chemosphere, 28, 131–137.  Google Scholar
First citationNishizawa, K. & Satoh, J. Y. (1975a). Bull. Chem. Soc. Jpn, 48, 1276–1279.  CrossRef CAS Web of Science Google Scholar
First citationNishizawa, K. & Satoh, J. Y. (1975b). Bull. Chem. Soc. Jpn, 48, 2215–2216.  CrossRef CAS Web of Science Google Scholar
First citationSander, P., Wittich, R. M., Fortnagel, P., Wilkes, H. & Francke, W. (1991). Appl. Environ. Microbiol. 57, 1430–1440.  PubMed CAS Web of Science Google Scholar
First citationSchraa, G., Boone, M. L., Jetten, M. S. M., Van Neerven, A. R. W., Colberg, P. J. & Zehnder, A. J. B. (1986). Appl. Environ. Microbiol. 52, 1374–1381.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpain, J. C., Zylstra, G. J., Blake, C. K. & Gibson, D. T. (1989). Appl. Environ. Microbiol. 55, 2648–2652.  CAS PubMed Web of Science Google Scholar
First citationSpiess, E., Sommer, C. & Gorisch, H. (1995). Appl. Environ. Microbiol. 61, 3884–3888.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds