organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hydr­­oxy-5-nitro­benzyl­­idene)-2-(1H-indol-3-yl)acetohydrazide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 July 2008; accepted 12 August 2008; online 16 August 2008)

The mol­ecule of the title compound, C17H14N4O4, uses its amide –NH– group to form a hydrogen bond to the amido –C(=O)– group of an adjacent mol­ecule to furnish a linear chain structure. The hydr­oxy group forms an intra­molecular hydrogen bond; the indolyl –NH– unit does not engage in any strong hydrogen-bonding inter­actions.

Related literature

For similar compounds, see: Martin Reyes et al. (1986[Martin Reyes, M. G., Gili, P., Zarza, P. M., Medina Ortega, A. & Diaz Gonzalez, M. C. (1986). Inorg. Chim. Acta, 116, 153-156.]); Martin Zarza et al. (1989[Martin Zarza, P., Gili, P., Mederos, A. & Medina, A. (1989). Thermochim. Acta, 156, 231-238.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N4O4

  • Mr = 338.32

  • Orthorhombic, P b c a

  • a = 9.5387 (2) Å

  • b = 11.2724 (3) Å

  • c = 29.7796 (7) Å

  • V = 3202.0 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 47721 measured reflections

  • 3679 independent reflections

  • 2059 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.160

  • S = 1.02

  • 3679 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N2 0.84 1.85 2.583 (2) 146
N3—H3n⋯O4i 0.88 2.07 2.827 (2) 144
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

There are many examples of Schiff bases derived from the condensation of salicylaldehyde and substituted salicyldehydes with hydrazides such as the ones reported by Martin Reyes et al. (1986) and Martin Zarza et al. (1989). The title compound (Fig. 1) is another example. The molecule uses its amido –NH– group to form a hydrogen bond to the amido –C(=O)– group of an adjacent molecule to furnish a linear chain structure.

Related literature top

For similar compounds, see: Martin Reyes et al. (1986); Martin Zarza et al. (1989).

Experimental top

The Schiff base was prepared by refluxing a solution of indole-3-acetic acid hydrazide (0.34 g, 1.80 mmol) and 5-nitrosalicylaldehyde (0.30 g, 1.80 mmol) in acidified ethanol (25 ml) for 2 h. On cooling to room temperature, yellow crystals separated out.

Refinement top

All H-atoms were placed in calculated positions (C—H 0.95, N—H 0.88, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C,N,O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of (I) (Barbour, 2001) at the 50% probability level. Dashed line indicates H-bonding.
N'-(2-Hydroxy-5-nitrobenzylidene)-2-(1H-indol-3-yl)acetohydrazide top
Crystal data top
C17H14N4O4F(000) = 1408
Mr = 338.32Dx = 1.404 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3679 reflections
a = 9.5387 (2) Åθ = 2.5–22.2°
b = 11.2724 (3) ŵ = 0.10 mm1
c = 29.7796 (7) ÅT = 100 K
V = 3202.0 (1) Å3Irregular block, yellow
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
2059 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 27.5°, θmin = 1.4°
ω scansh = 1212
47721 measured reflectionsk = 1413
3679 independent reflectionsl = 3838
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0885P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3679 reflectionsΔρmax = 0.18 e Å3
228 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.007 (1)
Crystal data top
C17H14N4O4V = 3202.0 (1) Å3
Mr = 338.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.5387 (2) ŵ = 0.10 mm1
b = 11.2724 (3) ÅT = 100 K
c = 29.7796 (7) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
2059 reflections with I > 2σ(I)
47721 measured reflectionsRint = 0.053
3679 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
3679 reflectionsΔρmin = 0.21 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76143 (16)0.34962 (15)0.66810 (5)0.0747 (5)
H1O0.73440.40580.68450.112*
O20.50825 (18)0.27110 (16)0.47819 (5)0.0896 (6)
O30.36688 (19)0.40496 (16)0.50246 (5)0.0853 (5)
O40.78329 (15)0.61201 (15)0.75230 (5)0.0790 (5)
N10.4670 (2)0.33901 (17)0.50757 (6)0.0647 (5)
N20.60812 (15)0.52866 (14)0.69094 (5)0.0522 (4)
N30.56843 (16)0.61209 (15)0.72184 (5)0.0543 (5)
H3N0.48210.63970.72230.065*
N40.79603 (19)0.75966 (17)0.89103 (6)0.0712 (5)
H4N0.85980.78790.90950.085*
C10.6858 (2)0.34823 (18)0.63004 (7)0.0563 (5)
C20.7229 (2)0.26733 (18)0.59698 (8)0.0651 (6)
H20.79800.21370.60220.078*
C30.6523 (2)0.26386 (18)0.55689 (7)0.0625 (6)
H30.67870.20900.53420.075*
C40.5426 (2)0.34134 (17)0.55005 (6)0.0538 (5)
C50.5011 (2)0.42048 (16)0.58253 (6)0.0511 (5)
H50.42370.47150.57720.061*
C60.57211 (19)0.42584 (16)0.62300 (6)0.0473 (5)
C70.53086 (19)0.51242 (17)0.65658 (6)0.0505 (5)
H70.44680.55670.65300.061*
C80.6644 (2)0.65087 (18)0.75150 (6)0.0555 (5)
C90.6133 (2)0.7485 (2)0.78219 (6)0.0643 (6)
H9A0.64270.82620.76990.077*
H9B0.50950.74720.78320.077*
C100.6695 (2)0.73543 (17)0.82885 (6)0.0546 (5)
C110.7735 (2)0.7979 (2)0.84821 (7)0.0684 (6)
H110.82420.86000.83400.082*
C120.62245 (19)0.65262 (16)0.86168 (7)0.0514 (5)
C130.5173 (2)0.56695 (18)0.86298 (8)0.0626 (6)
H130.45990.55300.83740.075*
C140.4978 (3)0.50326 (19)0.90151 (9)0.0745 (7)
H140.42620.44470.90240.089*
C150.5803 (3)0.5221 (2)0.93952 (8)0.0753 (7)
H150.56400.47600.96570.090*
C160.6847 (2)0.6062 (2)0.93974 (7)0.0667 (6)
H160.74110.61940.96550.080*
C170.7037 (2)0.67047 (18)0.90073 (7)0.0561 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0634 (10)0.0901 (11)0.0707 (10)0.0201 (8)0.0089 (8)0.0030 (8)
O20.0991 (14)0.1023 (13)0.0672 (11)0.0122 (10)0.0139 (9)0.0333 (10)
O30.0835 (12)0.0954 (12)0.0771 (11)0.0045 (10)0.0245 (9)0.0215 (9)
O40.0393 (9)0.1232 (13)0.0745 (11)0.0156 (8)0.0106 (7)0.0360 (9)
N10.0663 (12)0.0712 (12)0.0566 (11)0.0201 (10)0.0062 (9)0.0134 (10)
N20.0406 (9)0.0683 (10)0.0477 (9)0.0033 (8)0.0012 (7)0.0058 (8)
N30.0360 (8)0.0762 (11)0.0507 (10)0.0042 (8)0.0002 (7)0.0134 (8)
N40.0664 (12)0.0860 (13)0.0612 (11)0.0182 (10)0.0085 (9)0.0171 (10)
C10.0460 (11)0.0607 (12)0.0623 (13)0.0011 (9)0.0046 (10)0.0044 (10)
C20.0548 (13)0.0590 (13)0.0814 (16)0.0065 (10)0.0103 (12)0.0004 (11)
C30.0592 (14)0.0557 (12)0.0724 (15)0.0079 (10)0.0201 (12)0.0112 (10)
C40.0512 (12)0.0533 (11)0.0568 (12)0.0139 (9)0.0058 (10)0.0048 (9)
C50.0460 (11)0.0536 (11)0.0536 (11)0.0039 (9)0.0030 (8)0.0029 (9)
C60.0409 (10)0.0498 (10)0.0513 (11)0.0052 (8)0.0050 (8)0.0011 (9)
C70.0416 (11)0.0583 (11)0.0515 (11)0.0014 (9)0.0018 (9)0.0006 (9)
C80.0428 (12)0.0750 (13)0.0488 (11)0.0012 (10)0.0009 (9)0.0068 (10)
C90.0573 (13)0.0742 (14)0.0613 (13)0.0078 (11)0.0020 (10)0.0119 (11)
C100.0496 (12)0.0617 (12)0.0524 (11)0.0006 (9)0.0004 (9)0.0154 (9)
C110.0671 (15)0.0730 (14)0.0650 (14)0.0150 (12)0.0039 (11)0.0092 (11)
C120.0443 (11)0.0532 (11)0.0568 (12)0.0047 (9)0.0009 (9)0.0189 (9)
C130.0534 (13)0.0564 (12)0.0781 (15)0.0004 (10)0.0012 (11)0.0154 (11)
C140.0665 (15)0.0541 (12)0.103 (2)0.0025 (11)0.0122 (14)0.0064 (13)
C150.0858 (18)0.0594 (13)0.0808 (17)0.0180 (13)0.0207 (14)0.0039 (12)
C160.0717 (15)0.0718 (14)0.0566 (13)0.0192 (13)0.0007 (11)0.0090 (11)
C170.0523 (12)0.0578 (12)0.0583 (12)0.0059 (10)0.0013 (10)0.0171 (10)
Geometric parameters (Å, º) top
O1—C11.344 (2)C5—H50.9500
O1—H1O0.8400C6—C71.452 (3)
O2—N11.227 (2)C7—H70.9500
O3—N11.220 (2)C8—C91.512 (3)
O4—C81.216 (2)C9—C101.497 (3)
N1—C41.456 (3)C9—H9A0.9900
N2—C71.274 (2)C9—H9B0.9900
N2—N31.369 (2)C10—C111.347 (3)
N3—C81.345 (2)C10—C121.424 (3)
N3—H3N0.8800C11—H110.9500
N4—C111.363 (3)C12—C131.393 (3)
N4—C171.367 (3)C12—C171.412 (3)
N4—H4N0.8800C13—C141.366 (3)
C1—C21.388 (3)C13—H130.9500
C1—C61.409 (3)C14—C151.395 (3)
C2—C31.371 (3)C14—H140.9500
C2—H20.9500C15—C161.375 (3)
C3—C41.378 (3)C15—H150.9500
C3—H30.9500C16—C171.381 (3)
C4—C51.374 (3)C16—H160.9500
C5—C61.384 (3)
C1—O1—H1O109.5O4—C8—C9123.48 (18)
O3—N1—O2122.85 (19)N3—C8—C9114.46 (18)
O3—N1—C4119.01 (18)C10—C9—C8111.95 (17)
O2—N1—C4118.1 (2)C10—C9—H9A109.2
C7—N2—N3118.59 (16)C8—C9—H9A109.2
C8—N3—N2118.45 (16)C10—C9—H9B109.2
C8—N3—H3N120.8C8—C9—H9B109.2
N2—N3—H3N120.8H9A—C9—H9B107.9
C11—N4—C17109.21 (17)C11—C10—C12106.33 (18)
C11—N4—H4N125.4C11—C10—C9127.6 (2)
C17—N4—H4N125.4C12—C10—C9126.11 (18)
O1—C1—C2117.97 (19)C10—C11—N4110.5 (2)
O1—C1—C6122.12 (18)C10—C11—H11124.7
C2—C1—C6119.91 (19)N4—C11—H11124.7
C3—C2—C1120.8 (2)C13—C12—C17118.12 (19)
C3—C2—H2119.6C13—C12—C10134.45 (19)
C1—C2—H2119.6C17—C12—C10107.40 (17)
C2—C3—C4118.89 (19)C14—C13—C12119.1 (2)
C2—C3—H3120.6C14—C13—H13120.5
C4—C3—H3120.6C12—C13—H13120.5
C5—C4—C3121.73 (19)C13—C14—C15121.7 (2)
C5—C4—N1118.73 (19)C13—C14—H14119.2
C3—C4—N1119.54 (18)C15—C14—H14119.2
C4—C5—C6120.04 (18)C16—C15—C14121.2 (2)
C4—C5—H5120.0C16—C15—H15119.4
C6—C5—H5120.0C14—C15—H15119.4
C5—C6—C1118.63 (17)C15—C16—C17116.9 (2)
C5—C6—C7119.78 (17)C15—C16—H16121.5
C1—C6—C7121.58 (18)C17—C16—H16121.5
N2—C7—C6119.53 (17)N4—C17—C16130.4 (2)
N2—C7—H7120.2N4—C17—C12106.52 (18)
C6—C7—H7120.2C16—C17—C12123.1 (2)
O4—C8—N3122.03 (18)
C7—N2—N3—C8163.35 (18)N3—C8—C9—C10142.14 (19)
O1—C1—C2—C3178.10 (19)C8—C9—C10—C11103.7 (2)
C6—C1—C2—C31.7 (3)C8—C9—C10—C1276.0 (3)
C1—C2—C3—C40.7 (3)C12—C10—C11—N40.4 (2)
C2—C3—C4—C50.9 (3)C9—C10—C11—N4179.39 (19)
C2—C3—C4—N1179.78 (17)C17—N4—C11—C100.8 (2)
O3—N1—C4—C51.9 (3)C11—C10—C12—C13177.9 (2)
O2—N1—C4—C5177.32 (17)C9—C10—C12—C132.4 (3)
O3—N1—C4—C3177.38 (18)C11—C10—C12—C170.1 (2)
O2—N1—C4—C33.4 (3)C9—C10—C12—C17179.90 (18)
C3—C4—C5—C61.6 (3)C17—C12—C13—C140.6 (3)
N1—C4—C5—C6179.14 (16)C10—C12—C13—C14178.1 (2)
C4—C5—C6—C10.5 (3)C12—C13—C14—C150.1 (3)
C4—C5—C6—C7177.88 (16)C13—C14—C15—C160.2 (3)
O1—C1—C6—C5178.74 (17)C14—C15—C16—C170.1 (3)
C2—C1—C6—C51.0 (3)C11—N4—C17—C16178.7 (2)
O1—C1—C6—C70.3 (3)C11—N4—C17—C120.8 (2)
C2—C1—C6—C7179.43 (17)C15—C16—C17—N4179.0 (2)
N3—N2—C7—C6178.97 (15)C15—C16—C17—C120.4 (3)
C5—C6—C7—N2170.09 (17)C13—C12—C17—N4178.75 (16)
C1—C6—C7—N28.3 (3)C10—C12—C17—N40.6 (2)
N2—N3—C8—O41.8 (3)C13—C12—C17—C160.8 (3)
N2—N3—C8—C9176.17 (17)C10—C12—C17—C16178.93 (18)
O4—C8—C9—C1039.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N20.841.852.583 (2)146
N3—H3n···O4i0.882.072.827 (2)144
N4—H4n···O2ii0.882.493.216 (2)140
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H14N4O4
Mr338.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)9.5387 (2), 11.2724 (3), 29.7796 (7)
V3)3202.0 (1)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
47721, 3679, 2059
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.160, 1.02
No. of reflections3679
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N20.841.852.583 (2)146
N3—H3n···O4i0.882.072.827 (2)144
Symmetry code: (i) x1/2, y, z+3/2.
 

Acknowledgements

We thank the Science Fund (12–02-03–2031, 12–02-03–2051) and the University of Malaya (PJP) for supporting this study. We are grateful to the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMartin Reyes, M. G., Gili, P., Zarza, P. M., Medina Ortega, A. & Diaz Gonzalez, M. C. (1986). Inorg. Chim. Acta, 116, 153–156.  CrossRef CAS Google Scholar
First citationMartin Zarza, P., Gili, P., Mederos, A. & Medina, A. (1989). Thermochim. Acta, 156, 231–238.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds