metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Diazenediyldipyridinium (4-pyridyldiazen­yl)pyridinium octa­cyanidomolyb­date(V) tetra­hydrate

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 23 June 2008; accepted 3 August 2008; online 13 August 2008)

The structure of the title complex, (C10H10N4)(C10H9N4)[Mo(CN)8]·4H2O, consists of 4,4′-diazenediyldipyridinium and (4-pyridyldiazen­yl)pyridinium cations disordered over the same site, an [Mo(CN)8]3− anion and four uncoordinated water mol­ecules. The cations (crystallographic symmetry, 2) and the [Mo(CN)8]3− anion (crystallographic symmetry, 222) are arranged in an alternating fashion, forming a two-dimensional layered structure through hydrogen bonds. Hydrogen bonds, ππ stacking inter­actions (shortest distance = 4.7872 Å) and van der Waals forces between adjacent layers generate a three-dimensional supra­molecular structure.

Related literature

For information on octacyanidometalate-based compounds complexes, see: Chelebaeva et al. (2008[Chelebaeva, E., Larionova, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D., Paz, F. A. A., Trifonov, A. & Guérin, C. (2008). Inorg. Chem. 47, 775-777.]); Ikeda et al. (2005[Ikeda, S., Hozumi, T., Hashimoto, K. & Ohkoshi, S. I. (2005). Dalton Trans. pp. 2120-2123.]); Kosaka et al. (2007[Kosaka, W., Hashimoto, K. & Ohkoshi, S. I. (2007). Bull. Chem. Soc. Jpn, 80, 2350-2356.]); Matoga et al. (2005[Matoga, D., Mikuriya, M., Handa, M. & Szklarzewicz, J. (2005). Chem. Lett. 34, 1550-1551.]); Prins et al. (2007[Prins, F., Pasca, E., de Jongh, L. J., Kooijman, H., Spek, A. L. & Tanase, S. (2007). Angew. Chem. Int. Ed. 46, 6081-6084.]); Przychodzeń et al. (2007[Przychodzeń, P., Pełka, R., Lewiński, K., Supel, J., Rams, M., Tomala, K. & Sieklucka, B. (2007). Inorg. Chem. 46, 8924-8938.]); Wang et al. (2006[Wang, Z. X., Shen, X. F., Wang, J., Zhang, P., Li, Y. Z., Nfor, E. N., Song, Y., Ohkoshi, S. I., Hashimoto, K. & You, X. Z. (2006). Angew. Chem. Int. Ed. 45, 3287-3291.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10N4)(C10H9N4)[Mo(CN)8]·4H2O

  • Mr = 747.60

  • Orthorhombic, C c c a

  • a = 16.259 (5) Å

  • b = 12.787 (4) Å

  • c = 15.442 (5) Å

  • V = 3210.5 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 291 (2) K

  • 0.28 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.895

  • 13328 measured reflections

  • 1851 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.065

  • S = 1.06

  • 1851 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.86 (4) 1.86 (4) 2.675 (3) 157 (3)
O1—H1A⋯N2i 0.85 (3) 2.06 (3) 2.809 (3) 147 (3)
O1—H1B⋯N1ii 0.85 (3) 2.40 (3) 3.164 (3) 150 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 6.10) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 6.10) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the design and synthesis of multifunctional materials with lanthanide octacyanometalate-based metal assemblies are attracting much more interest (Chelebaeva et al., 2008; Przychodzeń et al., 2007; Ikeda et al., 2005; Kosaka et al., 2007; Matoga et al., 2005; Wang et al., 2006). The combination of the octacyanometalate [M(CN)8]3-/4- (M = Mo,W) building blocks with the lanthanide ions plays an important part in the construction of new supramolecular magnetic materials (Prins et al., 2007). In search of a new lanthanide-containing octacyanometalate-based magnet using [MoV(CN)8]3-and Ce3+as the building blocks, we tired to employ 4,4'-azpy (4,4'-azobispyridine) as the primary ligand for coordination. However, the unexpected octacyanomolybdate(V)-based supramolecular complex [H3(4,4'-azpy)2][Mo(CN)8].4H2O without Ce3+ was obtained instead.

The title complex consists of [H2(4,4'-azpy)]2+ and [H(4,4'-azpy)]+ cations disordered over the same site, [Mo(CN)8]3- anion and crystallized water molecules (Fig. 1). It is worth noting that [H2(4,4'-azpy)]2+ and [H(4,4'-azpy)]+ cations are both disordered over the same site.

In the structure, the eight CN groups are all terminal ones and the average distance of Mo—C is 2.1582 Å. The center Mo atom is coordinated by eight cyano groups in a distorted square antiprism. [H2(4,4'-azpy)]2+ cation, [H(4,4'-azpy)]+ cation (crystallographic symmetry, 2), and [Mo(CN)8]3- anion (crystallographic symmetry, 222) arranged in an alternating fashion to form a two-dimensional layered structure (Fig. 2) through O1—H1A···N2 and N3—H3A···O1 hydrogen-bonds. Then, a three-dimension supramolecular structure (Fig. 3) was formed through O1—H1B···N1 hydrogen-bonds, π-π packing and Van der Waals forces between adjacent layers.

Related literature top

For information based on octacyanometalate-based compounds complexes see: Chelebaeva et al. (2008); Ikeda et al. (2005); Kosaka et al. (2007); Matoga et al. (2005); Prins et al. (2007); Przychodzeń et al. (2007); Wang et al. (2006).

Experimental top

Single crystals of the title complex were prepared at room temperature in the dark by slow diffusion of anacetonitrile solution (2 ml) containing both Ce(NO3)3.6H2O (21.71 mg, 0.05 mmol) and 4,4'-azpy (9.21 mg, 0.05 mmol) into an acetonitrile solution (20 ml) of [HN(n—C4H9)3]3[Mo(CN)8].4H2O (46.60 mg, 0.05 mmol). After two weeks, pale yellow crystals were obtained.

Refinement top

All non-H atoms were refined anisotropically. The (C,N)H atoms of the 4,4'-azpy molecules were placed in calculated positions with C—H and N—H distances 0.99 Å and 0.92 Å, respectively, with Uiso(H) = 1.2Ueq(C,N). The H atoms of the solvent water molecules were located in a difference Fourier map and refined as riding, with O—H restraints of 0.95 Å, and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing 30% probability displacement ellipsoids. H atoms are not shown for clarity.
[Figure 2] Fig. 2. View in the ac plane of the hydrogen-bonding interactions in the title complex. [Symmetry codes: A: 0.5 - x, 1.5 - y, 1 - z; B: 1/2 + x, y, 1 - z; C: 1 - x,1.5 - y, z; D: 0.5 - x, -1/2 + y, 1.5 - z; E: 0.5 - x, 1 - y, z; F: x, 1.5 - y, 1.5 - z; G: 1 - x, 1 - y, 1 - z; H: 1/2 + x, 1.5 - y, -1/2 + z.]
[Figure 3] Fig. 3. The hydrogen-bonding interactions between adjacent layers in the title complex. [Symmetry codes: A: 0.5 - x, 1.5 - y, 1 - z; B: 1/2 + x, y, 1 - z; C: 1 - x, 1.5 - y, z; D: 0.5 - x,-1/2 + y, 1.5 - z; E: 0.5 - x, 1 - y, z; F: x, 1.5 - y, 1.5 - z; G: 1 - x, 1 - y, 1 - z; H:1/2 + x, 1.5 - y, -1/2 + z.]
4,4'-Diazenediyldipyridinium (4-pyridyldiazenyl)pyridinium octacyanidomolybdate(V) tetrahydrate top
Crystal data top
(C10H10N4)(C10H9N4)[Mo(CN)8]·4H2OF(000) = 1524
Mr = 747.60Dx = 1.547 Mg m3
Orthorhombic, CccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2b 2bcCell parameters from 13328 reflections
a = 16.259 (5) Åθ = 2.4–27.5°
b = 12.787 (4) ŵ = 0.47 mm1
c = 15.442 (5) ÅT = 291 K
V = 3210.5 (18) Å3Block, pale yellow
Z = 40.28 × 0.26 × 0.24 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1851 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2121
Tmin = 0.879, Tmax = 0.895k = 1616
13328 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0235P)2 + 2.9147P]
where P = (Fo2 + 2Fc2)/3
1851 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
(C10H10N4)(C10H9N4)[Mo(CN)8]·4H2OV = 3210.5 (18) Å3
Mr = 747.60Z = 4
Orthorhombic, CccaMo Kα radiation
a = 16.259 (5) ŵ = 0.47 mm1
b = 12.787 (4) ÅT = 291 K
c = 15.442 (5) Å0.28 × 0.26 × 0.24 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1851 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1540 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.895Rint = 0.050
13328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.52 e Å3
1851 reflectionsΔρmin = 0.28 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.39870 (13)0.84531 (17)0.79366 (15)0.0382 (5)
C20.45460 (14)0.83539 (19)0.63923 (15)0.0427 (5)
C30.41341 (15)0.62509 (19)0.31466 (17)0.0461 (6)
C40.43896 (15)0.63527 (19)0.40018 (17)0.0447 (6)
H40.49480.63850.41320.054*
C50.38109 (14)0.64066 (18)0.46624 (17)0.0450 (6)
H50.39820.64740.52340.054*
C60.27215 (16)0.62570 (19)0.36140 (16)0.0464 (6)
H60.21630.62250.34840.056*
C70.33002 (14)0.62029 (19)0.29530 (16)0.0441 (6)
H70.31290.61350.23810.053*
Mo10.50000.75000.75000.02552 (10)
N10.34570 (12)0.89415 (16)0.81824 (14)0.0468 (5)
N20.43040 (13)0.87856 (16)0.57871 (13)0.0462 (5)
N30.29771 (12)0.63591 (16)0.44687 (13)0.0437 (5)
H3A0.262 (2)0.639 (3)0.488 (2)0.052*0.75
N40.46326 (12)0.62255 (16)0.24043 (15)0.0495 (5)
O10.17847 (11)0.59099 (14)0.56028 (11)0.0457 (4)
H1A0.1323 (19)0.593 (2)0.535 (2)0.069*
H1B0.1865 (18)0.530 (2)0.5803 (19)0.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (11)0.0422 (12)0.0353 (12)0.0130 (9)0.0141 (9)0.0110 (9)
C20.0442 (13)0.0452 (13)0.0387 (13)0.0103 (10)0.0093 (10)0.0096 (10)
C30.0477 (13)0.0468 (14)0.0438 (14)0.0125 (10)0.0088 (11)0.0055 (11)
C40.0376 (11)0.0457 (13)0.0510 (15)0.0007 (9)0.0096 (11)0.0065 (11)
C50.0437 (13)0.0476 (13)0.0436 (14)0.0068 (10)0.0092 (11)0.0120 (11)
C60.0499 (13)0.0449 (13)0.0443 (14)0.0183 (10)0.0102 (11)0.0136 (10)
C70.0453 (13)0.0482 (14)0.0388 (14)0.0139 (10)0.0010 (11)0.0019 (11)
Mo10.02788 (16)0.02590 (16)0.02278 (16)0.0000.0000.000
N10.0505 (12)0.0483 (11)0.0417 (12)0.0182 (9)0.0095 (9)0.0131 (9)
N20.0595 (13)0.0422 (11)0.0371 (11)0.0099 (9)0.0119 (10)0.0020 (9)
N30.0438 (11)0.0452 (11)0.0420 (12)0.0206 (9)0.0038 (9)0.0123 (9)
N40.0492 (10)0.0498 (11)0.0496 (13)0.0047 (9)0.0063 (11)0.0067 (10)
O10.0429 (9)0.0484 (10)0.0459 (11)0.0129 (8)0.0064 (8)0.0155 (8)
Geometric parameters (Å, º) top
C1—N11.130 (3)C6—H60.9300
C1—Mo12.157 (2)C7—H70.9300
C2—N21.155 (3)Mo1—C1i2.157 (2)
C2—Mo12.159 (2)Mo1—C1ii2.157 (2)
C3—C71.390 (3)Mo1—C1iii2.157 (2)
C3—C41.391 (4)Mo1—C2iii2.159 (2)
C3—N41.404 (3)Mo1—C2ii2.159 (2)
C4—C51.389 (3)Mo1—C2i2.159 (2)
C4—H40.9300N3—H3A0.86 (4)
C5—N31.390 (3)N4—N4iv1.231 (4)
C5—H50.9300O1—H1A0.85 (3)
C6—N31.390 (3)O1—H1B0.85 (3)
C6—C71.390 (3)
N1—C1—Mo1178.5 (2)C1ii—Mo1—C2iii77.12 (10)
N2—C2—Mo1178.1 (2)C1iii—Mo1—C2iii72.59 (9)
C7—C3—C4120.0 (2)C1i—Mo1—C277.12 (10)
C7—C3—N4112.7 (2)C1—Mo1—C272.59 (9)
C4—C3—N4127.2 (2)C1ii—Mo1—C274.20 (9)
C5—C4—C3120.0 (2)C1iii—Mo1—C2142.59 (9)
C5—C4—H4120.0C2iii—Mo1—C275.23 (13)
C3—C4—H4120.0C1i—Mo1—C2ii142.59 (9)
C4—C5—N3120.0 (2)C1—Mo1—C2ii74.20 (9)
C4—C5—H5120.0C1ii—Mo1—C2ii72.59 (9)
N3—C5—H5120.0C1iii—Mo1—C2ii77.12 (10)
N3—C6—C7120.0 (2)C2iii—Mo1—C2ii140.02 (13)
N3—C6—H6120.0C2—Mo1—C2ii119.25 (14)
C7—C6—H6120.0C1i—Mo1—C2i72.59 (9)
C3—C7—C6120.0 (2)C1—Mo1—C2i77.12 (10)
C3—C7—H7120.0C1ii—Mo1—C2i142.59 (9)
C6—C7—H7120.0C1iii—Mo1—C2i74.20 (9)
C1i—Mo1—C180.44 (12)C2iii—Mo1—C2i119.25 (14)
C1i—Mo1—C1ii143.57 (12)C2—Mo1—C2i140.02 (13)
C1—Mo1—C1ii111.19 (13)C2ii—Mo1—C2i75.23 (13)
C1i—Mo1—C1iii111.19 (13)C5—N3—C6120.0 (2)
C1—Mo1—C1iii143.57 (12)C5—N3—H3A120 (2)
C1ii—Mo1—C1iii80.44 (12)C6—N3—H3A120 (2)
C1i—Mo1—C2iii74.20 (9)N4iv—N4—C3111.4 (3)
C1—Mo1—C2iii142.59 (9)H1A—O1—H1B109 (3)
Symmetry codes: (i) x, y+3/2, z+3/2; (ii) x+1, y, z+3/2; (iii) x+1, y+3/2, z; (iv) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.86 (4)1.86 (4)2.675 (3)157 (3)
O1—H1A···N2v0.85 (3)2.06 (3)2.809 (3)147 (3)
O1—H1B···N1vi0.85 (3)2.40 (3)3.164 (3)150 (3)
Symmetry codes: (v) x+1/2, y+3/2, z+1; (vi) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C10H10N4)(C10H9N4)[Mo(CN)8]·4H2O
Mr747.60
Crystal system, space groupOrthorhombic, Ccca
Temperature (K)291
a, b, c (Å)16.259 (5), 12.787 (4), 15.442 (5)
V3)3210.5 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.879, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
13328, 1851, 1540
Rint0.050
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.065, 1.06
No. of reflections1851
No. of parameters121
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.86 (4)1.86 (4)2.675 (3)157 (3)
O1—H1A···N2i0.85 (3)2.06 (3)2.809 (3)147 (3)
O1—H1B···N1ii0.85 (3)2.40 (3)3.164 (3)150 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The work is supported by the University Natural Science Foundation of Jiangsu Province (No. 07KJB150030).

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 (Version 6.10) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChelebaeva, E., Larionova, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D., Paz, F. A. A., Trifonov, A. & Guérin, C. (2008). Inorg. Chem. 47, 775–777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIkeda, S., Hozumi, T., Hashimoto, K. & Ohkoshi, S. I. (2005). Dalton Trans. pp. 2120–2123.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKosaka, W., Hashimoto, K. & Ohkoshi, S. I. (2007). Bull. Chem. Soc. Jpn, 80, 2350–2356.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatoga, D., Mikuriya, M., Handa, M. & Szklarzewicz, J. (2005). Chem. Lett. 34, 1550–1551.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrins, F., Pasca, E., de Jongh, L. J., Kooijman, H., Spek, A. L. & Tanase, S. (2007). Angew. Chem. Int. Ed. 46, 6081–6084.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrzychodzeń, P., Pełka, R., Lewiński, K., Supel, J., Rams, M., Tomala, K. & Sieklucka, B. (2007). Inorg. Chem. 46, 8924–8938.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. X., Shen, X. F., Wang, J., Zhang, P., Li, Y. Z., Nfor, E. N., Song, Y., Ohkoshi, S. I., Hashimoto, K. & You, X. Z. (2006). Angew. Chem. Int. Ed. 45, 3287–3291.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds