metal-organic compounds
4,4′-Diazenediyldipyridinium (4-pyridyldiazenyl)pyridinium octacyanidomolybdate(V) tetrahydrate
aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com
The structure of the title complex, (C10H10N4)(C10H9N4)[Mo(CN)8]·4H2O, consists of 4,4′-diazenediyldipyridinium and (4-pyridyldiazenyl)pyridinium cations disordered over the same site, an [Mo(CN)8]3− anion and four uncoordinated water molecules. The cations (crystallographic symmetry, 2) and the [Mo(CN)8]3− anion (crystallographic symmetry, 222) are arranged in an alternating fashion, forming a two-dimensional layered structure through hydrogen bonds. Hydrogen bonds, π–π stacking interactions (shortest distance = 4.7872 Å) and between adjacent layers generate a three-dimensional supramolecular structure.
Related literature
For information on octacyanidometalate-based compounds complexes, see: Chelebaeva et al. (2008); Ikeda et al. (2005); Kosaka et al. (2007); Matoga et al. (2005); Prins et al. (2007); Przychodzeń et al. (2007); Wang et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680802494X/br2078sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680802494X/br2078Isup2.hkl
Single crystals of the title complex were prepared at room temperature in the dark by slow diffusion of anacetonitrile solution (2 ml) containing both Ce(NO3)3.6H2O (21.71 mg, 0.05 mmol) and 4,4'-azpy (9.21 mg, 0.05 mmol) into an acetonitrile solution (20 ml) of [HN(n—C4H9)3]3[Mo(CN)8].4H2O (46.60 mg, 0.05 mmol). After two weeks, pale yellow crystals were obtained.
All non-H atoms were refined anisotropically. The (C,N)H atoms of the 4,4'-azpy molecules were placed in calculated positions with C—H and N—H distances 0.99 Å and 0.92 Å, respectively, with Uiso(H) = 1.2Ueq(C,N). The H atoms of the solvent water molecules were located in a difference Fourier map and refined as riding, with O—H restraints of 0.95 Å, and with Uiso(H) = 1.2Ueq(O).
Data collection: SMART (Bruker, 2000); cell
SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C10H10N4)(C10H9N4)[Mo(CN)8]·4H2O | F(000) = 1524 |
Mr = 747.60 | Dx = 1.547 Mg m−3 |
Orthorhombic, Ccca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2b 2bc | Cell parameters from 13328 reflections |
a = 16.259 (5) Å | θ = 2.4–27.5° |
b = 12.787 (4) Å | µ = 0.47 mm−1 |
c = 15.442 (5) Å | T = 291 K |
V = 3210.5 (18) Å3 | Block, pale yellow |
Z = 4 | 0.28 × 0.26 × 0.24 mm |
Bruker SMART APEX CCD diffractometer | 1851 independent reflections |
Radiation source: fine-focus sealed tube | 1540 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ϕ and ω scans | θmax = 27.6°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −21→21 |
Tmin = 0.879, Tmax = 0.895 | k = −16→16 |
13328 measured reflections | l = −19→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0235P)2 + 2.9147P] where P = (Fo2 + 2Fc2)/3 |
1851 reflections | (Δ/σ)max < 0.001 |
121 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
(C10H10N4)(C10H9N4)[Mo(CN)8]·4H2O | V = 3210.5 (18) Å3 |
Mr = 747.60 | Z = 4 |
Orthorhombic, Ccca | Mo Kα radiation |
a = 16.259 (5) Å | µ = 0.47 mm−1 |
b = 12.787 (4) Å | T = 291 K |
c = 15.442 (5) Å | 0.28 × 0.26 × 0.24 mm |
Bruker SMART APEX CCD diffractometer | 1851 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1540 reflections with I > 2σ(I) |
Tmin = 0.879, Tmax = 0.895 | Rint = 0.050 |
13328 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.52 e Å−3 |
1851 reflections | Δρmin = −0.28 e Å−3 |
121 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.39870 (13) | 0.84531 (17) | 0.79366 (15) | 0.0382 (5) | |
C2 | 0.45460 (14) | 0.83539 (19) | 0.63923 (15) | 0.0427 (5) | |
C3 | 0.41341 (15) | 0.62509 (19) | 0.31466 (17) | 0.0461 (6) | |
C4 | 0.43896 (15) | 0.63527 (19) | 0.40018 (17) | 0.0447 (6) | |
H4 | 0.4948 | 0.6385 | 0.4132 | 0.054* | |
C5 | 0.38109 (14) | 0.64066 (18) | 0.46624 (17) | 0.0450 (6) | |
H5 | 0.3982 | 0.6474 | 0.5234 | 0.054* | |
C6 | 0.27215 (16) | 0.62570 (19) | 0.36140 (16) | 0.0464 (6) | |
H6 | 0.2163 | 0.6225 | 0.3484 | 0.056* | |
C7 | 0.33002 (14) | 0.62029 (19) | 0.29530 (16) | 0.0441 (6) | |
H7 | 0.3129 | 0.6135 | 0.2381 | 0.053* | |
Mo1 | 0.5000 | 0.7500 | 0.7500 | 0.02552 (10) | |
N1 | 0.34570 (12) | 0.89415 (16) | 0.81824 (14) | 0.0468 (5) | |
N2 | 0.43040 (13) | 0.87856 (16) | 0.57871 (13) | 0.0462 (5) | |
N3 | 0.29771 (12) | 0.63591 (16) | 0.44687 (13) | 0.0437 (5) | |
H3A | 0.262 (2) | 0.639 (3) | 0.488 (2) | 0.052* | 0.75 |
N4 | 0.46326 (12) | 0.62255 (16) | 0.24043 (15) | 0.0495 (5) | |
O1 | 0.17847 (11) | 0.59099 (14) | 0.56028 (11) | 0.0457 (4) | |
H1A | 0.1323 (19) | 0.593 (2) | 0.535 (2) | 0.069* | |
H1B | 0.1865 (18) | 0.530 (2) | 0.5803 (19) | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0371 (11) | 0.0422 (12) | 0.0353 (12) | 0.0130 (9) | −0.0141 (9) | −0.0110 (9) |
C2 | 0.0442 (13) | 0.0452 (13) | 0.0387 (13) | 0.0103 (10) | −0.0093 (10) | 0.0096 (10) |
C3 | 0.0477 (13) | 0.0468 (14) | 0.0438 (14) | 0.0125 (10) | 0.0088 (11) | 0.0055 (11) |
C4 | 0.0376 (11) | 0.0457 (13) | 0.0510 (15) | 0.0007 (9) | 0.0096 (11) | 0.0065 (11) |
C5 | 0.0437 (13) | 0.0476 (13) | 0.0436 (14) | 0.0068 (10) | 0.0092 (11) | 0.0120 (11) |
C6 | 0.0499 (13) | 0.0449 (13) | 0.0443 (14) | 0.0183 (10) | 0.0102 (11) | −0.0136 (10) |
C7 | 0.0453 (13) | 0.0482 (14) | 0.0388 (14) | 0.0139 (10) | −0.0010 (11) | 0.0019 (11) |
Mo1 | 0.02788 (16) | 0.02590 (16) | 0.02278 (16) | 0.000 | 0.000 | 0.000 |
N1 | 0.0505 (12) | 0.0483 (11) | 0.0417 (12) | 0.0182 (9) | −0.0095 (9) | −0.0131 (9) |
N2 | 0.0595 (13) | 0.0422 (11) | 0.0371 (11) | 0.0099 (9) | −0.0119 (10) | 0.0020 (9) |
N3 | 0.0438 (11) | 0.0452 (11) | 0.0420 (12) | 0.0206 (9) | 0.0038 (9) | −0.0123 (9) |
N4 | 0.0492 (10) | 0.0498 (11) | 0.0496 (13) | 0.0047 (9) | 0.0063 (11) | −0.0067 (10) |
O1 | 0.0429 (9) | 0.0484 (10) | 0.0459 (11) | 0.0129 (8) | 0.0064 (8) | 0.0155 (8) |
C1—N1 | 1.130 (3) | C6—H6 | 0.9300 |
C1—Mo1 | 2.157 (2) | C7—H7 | 0.9300 |
C2—N2 | 1.155 (3) | Mo1—C1i | 2.157 (2) |
C2—Mo1 | 2.159 (2) | Mo1—C1ii | 2.157 (2) |
C3—C7 | 1.390 (3) | Mo1—C1iii | 2.157 (2) |
C3—C4 | 1.391 (4) | Mo1—C2iii | 2.159 (2) |
C3—N4 | 1.404 (3) | Mo1—C2ii | 2.159 (2) |
C4—C5 | 1.389 (3) | Mo1—C2i | 2.159 (2) |
C4—H4 | 0.9300 | N3—H3A | 0.86 (4) |
C5—N3 | 1.390 (3) | N4—N4iv | 1.231 (4) |
C5—H5 | 0.9300 | O1—H1A | 0.85 (3) |
C6—N3 | 1.390 (3) | O1—H1B | 0.85 (3) |
C6—C7 | 1.390 (3) | ||
N1—C1—Mo1 | 178.5 (2) | C1ii—Mo1—C2iii | 77.12 (10) |
N2—C2—Mo1 | 178.1 (2) | C1iii—Mo1—C2iii | 72.59 (9) |
C7—C3—C4 | 120.0 (2) | C1i—Mo1—C2 | 77.12 (10) |
C7—C3—N4 | 112.7 (2) | C1—Mo1—C2 | 72.59 (9) |
C4—C3—N4 | 127.2 (2) | C1ii—Mo1—C2 | 74.20 (9) |
C5—C4—C3 | 120.0 (2) | C1iii—Mo1—C2 | 142.59 (9) |
C5—C4—H4 | 120.0 | C2iii—Mo1—C2 | 75.23 (13) |
C3—C4—H4 | 120.0 | C1i—Mo1—C2ii | 142.59 (9) |
C4—C5—N3 | 120.0 (2) | C1—Mo1—C2ii | 74.20 (9) |
C4—C5—H5 | 120.0 | C1ii—Mo1—C2ii | 72.59 (9) |
N3—C5—H5 | 120.0 | C1iii—Mo1—C2ii | 77.12 (10) |
N3—C6—C7 | 120.0 (2) | C2iii—Mo1—C2ii | 140.02 (13) |
N3—C6—H6 | 120.0 | C2—Mo1—C2ii | 119.25 (14) |
C7—C6—H6 | 120.0 | C1i—Mo1—C2i | 72.59 (9) |
C3—C7—C6 | 120.0 (2) | C1—Mo1—C2i | 77.12 (10) |
C3—C7—H7 | 120.0 | C1ii—Mo1—C2i | 142.59 (9) |
C6—C7—H7 | 120.0 | C1iii—Mo1—C2i | 74.20 (9) |
C1i—Mo1—C1 | 80.44 (12) | C2iii—Mo1—C2i | 119.25 (14) |
C1i—Mo1—C1ii | 143.57 (12) | C2—Mo1—C2i | 140.02 (13) |
C1—Mo1—C1ii | 111.19 (13) | C2ii—Mo1—C2i | 75.23 (13) |
C1i—Mo1—C1iii | 111.19 (13) | C5—N3—C6 | 120.0 (2) |
C1—Mo1—C1iii | 143.57 (12) | C5—N3—H3A | 120 (2) |
C1ii—Mo1—C1iii | 80.44 (12) | C6—N3—H3A | 120 (2) |
C1i—Mo1—C2iii | 74.20 (9) | N4iv—N4—C3 | 111.4 (3) |
C1—Mo1—C2iii | 142.59 (9) | H1A—O1—H1B | 109 (3) |
Symmetry codes: (i) x, −y+3/2, −z+3/2; (ii) −x+1, y, −z+3/2; (iii) −x+1, −y+3/2, z; (iv) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O1 | 0.86 (4) | 1.86 (4) | 2.675 (3) | 157 (3) |
O1—H1A···N2v | 0.85 (3) | 2.06 (3) | 2.809 (3) | 147 (3) |
O1—H1B···N1vi | 0.85 (3) | 2.40 (3) | 3.164 (3) | 150 (3) |
Symmetry codes: (v) −x+1/2, −y+3/2, −z+1; (vi) −x+1/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | (C10H10N4)(C10H9N4)[Mo(CN)8]·4H2O |
Mr | 747.60 |
Crystal system, space group | Orthorhombic, Ccca |
Temperature (K) | 291 |
a, b, c (Å) | 16.259 (5), 12.787 (4), 15.442 (5) |
V (Å3) | 3210.5 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.47 |
Crystal size (mm) | 0.28 × 0.26 × 0.24 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.879, 0.895 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13328, 1851, 1540 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.065, 1.06 |
No. of reflections | 1851 |
No. of parameters | 121 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.52, −0.28 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O1 | 0.86 (4) | 1.86 (4) | 2.675 (3) | 157 (3) |
O1—H1A···N2i | 0.85 (3) | 2.06 (3) | 2.809 (3) | 147 (3) |
O1—H1B···N1ii | 0.85 (3) | 2.40 (3) | 3.164 (3) | 150 (3) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y−1/2, −z+3/2. |
Acknowledgements
The work is supported by the University Natural Science Foundation of Jiangsu Province (No. 07KJB150030).
References
Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2 (Version 6.10) and SAINT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chelebaeva, E., Larionova, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D., Paz, F. A. A., Trifonov, A. & Guérin, C. (2008). Inorg. Chem. 47, 775–777. Web of Science CrossRef PubMed CAS Google Scholar
Ikeda, S., Hozumi, T., Hashimoto, K. & Ohkoshi, S. I. (2005). Dalton Trans. pp. 2120–2123. Web of Science CSD CrossRef PubMed Google Scholar
Kosaka, W., Hashimoto, K. & Ohkoshi, S. I. (2007). Bull. Chem. Soc. Jpn, 80, 2350–2356. Web of Science CSD CrossRef CAS Google Scholar
Matoga, D., Mikuriya, M., Handa, M. & Szklarzewicz, J. (2005). Chem. Lett. 34, 1550–1551. Web of Science CSD CrossRef CAS Google Scholar
Prins, F., Pasca, E., de Jongh, L. J., Kooijman, H., Spek, A. L. & Tanase, S. (2007). Angew. Chem. Int. Ed. 46, 6081–6084. Web of Science CSD CrossRef CAS Google Scholar
Przychodzeń, P., Pełka, R., Lewiński, K., Supel, J., Rams, M., Tomala, K. & Sieklucka, B. (2007). Inorg. Chem. 46, 8924–8938. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z. X., Shen, X. F., Wang, J., Zhang, P., Li, Y. Z., Nfor, E. N., Song, Y., Ohkoshi, S. I., Hashimoto, K. & You, X. Z. (2006). Angew. Chem. Int. Ed. 45, 3287–3291. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, the design and synthesis of multifunctional materials with lanthanide octacyanometalate-based metal assemblies are attracting much more interest (Chelebaeva et al., 2008; Przychodzeń et al., 2007; Ikeda et al., 2005; Kosaka et al., 2007; Matoga et al., 2005; Wang et al., 2006). The combination of the octacyanometalate [M(CN)8]3-/4- (M = Mo,W) building blocks with the lanthanide ions plays an important part in the construction of new supramolecular magnetic materials (Prins et al., 2007). In search of a new lanthanide-containing octacyanometalate-based magnet using [MoV(CN)8]3-and Ce3+as the building blocks, we tired to employ 4,4'-azpy (4,4'-azobispyridine) as the primary ligand for coordination. However, the unexpected octacyanomolybdate(V)-based supramolecular complex [H3(4,4'-azpy)2][Mo(CN)8].4H2O without Ce3+ was obtained instead.
The title complex consists of [H2(4,4'-azpy)]2+ and [H(4,4'-azpy)]+ cations disordered over the same site, [Mo(CN)8]3- anion and crystallized water molecules (Fig. 1). It is worth noting that [H2(4,4'-azpy)]2+ and [H(4,4'-azpy)]+ cations are both disordered over the same site.
In the structure, the eight CN groups are all terminal ones and the average distance of Mo—C is 2.1582 Å. The center Mo atom is coordinated by eight cyano groups in a distorted square antiprism. [H2(4,4'-azpy)]2+ cation, [H(4,4'-azpy)]+ cation (crystallographic symmetry, 2), and [Mo(CN)8]3- anion (crystallographic symmetry, 222) arranged in an alternating fashion to form a two-dimensional layered structure (Fig. 2) through O1—H1A···N2 and N3—H3A···O1 hydrogen-bonds. Then, a three-dimension supramolecular structure (Fig. 3) was formed through O1—H1B···N1 hydrogen-bonds, π-π packing and Van der Waals forces between adjacent layers.