metal-organic compounds
cis-Bis[2-(diphenylphosphino)benzenethiolato-κ2P,S]palladium(II)
aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, D. F., México.
*Correspondence e-mail: damor@servidor.unam.mx, simonho@servidor.unam.mx
The title compound, [Pd(C18H14PS)2], was synthesized by the reaction of (Ph2PC6H4SH) with [PdCl2(NCC6H5)2] in a 2:1 molar ratio in the presence of a slight excess of NEt3 as base in dichloromethane. The compound crystallizes with the Pd(II) atom on a twofold rotation axis. The palladium center has a slightly distorted square-planar environment, with the two P—S chelating ligands adopting a cis configuration. The present structure is a pseudo-polymorph of [Pd(C18H14PS)2]·CH2Cl2.
Related literature
For related literature, see: Andreasen et al. (1999); Braunstein & Naud (2001); Real et al. (2000); Canseco-Gonzalez et al. (2003, 2004); Dilworth & Weatley (2000); Dilworth et al. (2000); Gómez-Benítez et al. (2003, 2007a,b); Morales-Morales et al. (2002a,b); Ortner et al. (2000); Ríos-Moreno et al. (2005); Taguchi et al. (1999).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808026718/bt2741sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808026718/bt2741Isup2.hkl
Synthesis of cis-[Pd(Ph2PC6H4–2-S)2] (I). To a solution of (Ph2PC6H4–2-SH) (34 mg, 0.12 mmol) in CH2Cl2 (20 ml), NEt3 (13 mg, 0.13 mmol) and a CH2Cl2 solution (30 ml) of [Pd(Cl)2(NCC6H5)2] (22 mg, 0.058 mmol) were added under stirring. The resulting mixture was allowed to stir overnight. After this time, formation of a pale yellow precipitated was noticed, the product was filtered off under vacuum and washed twice with methanol. Recrystallization from a double layer solvent system CH2Cl2/MeOH afforded complex I as a microcrystalline yellow powder. Yield 87.5%. 1H-NMR (300 MHz, CDCl3), (7.71–6.79 (m, Ph, 28H); 31P-NMR (121 MHz, CDCl3), (-42.42 (s). Elem. Anal. Calculated for [C36H28P2S2Pd] Calc. %: C: 64.20, H: 4.00. Found %: C: 64.00, H: 4.20. MS-FAB+ [M+] = 692 m/z.
H atoms were included in calculated positions (C—H = 0.93 Å), and refined using a riding model,with Uiso(H) = 1.2Ueq of the
Geometrical restraints were applied in phenyl rings on P atom.Data collection: SMART (Bruker, 1999); cell
SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Pd(C18H14PS)2] | Dx = 1.531 Mg m−3 |
Mr = 693.04 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3221 | Cell parameters from 2935 reflections |
Hall symbol: P 32 2" | θ = 2.5–19.9° |
a = 9.306 (1) Å | µ = 0.89 mm−1 |
c = 30.069 (8) Å | T = 298 K |
V = 2255.2 (7) Å3 | Prism, yellow |
Z = 3 | 0.16 × 0.07 × 0.04 mm |
F(000) = 1056 |
Bruker SMART APEX CCD area-detector diffractometer | 2749 independent reflections |
Radiation source: fine-focus sealed tube | 1811 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.113 |
Detector resolution: 0.83 pixels mm-1 | θmax = 25.3°, θmin = 2.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −11→11 |
Tmin = 0.877, Tmax = 0.967 | l = −36→36 |
18737 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.82 | (Δ/σ)max = 0.001 |
2749 reflections | Δρmax = 1.40 e Å−3 |
186 parameters | Δρmin = −0.31 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1113 Friedel Pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.05 (6) |
[Pd(C18H14PS)2] | Z = 3 |
Mr = 693.04 | Mo Kα radiation |
Trigonal, P3221 | µ = 0.89 mm−1 |
a = 9.306 (1) Å | T = 298 K |
c = 30.069 (8) Å | 0.16 × 0.07 × 0.04 mm |
V = 2255.2 (7) Å3 |
Bruker SMART APEX CCD area-detector diffractometer | 2749 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1811 reflections with I > 2σ(I) |
Tmin = 0.877, Tmax = 0.967 | Rint = 0.113 |
18737 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.084 | Δρmax = 1.40 e Å−3 |
S = 0.82 | Δρmin = −0.31 e Å−3 |
2749 reflections | Absolute structure: Flack (1983), 1113 Friedel Pairs |
186 parameters | Absolute structure parameter: −0.05 (6) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd | 0.48559 (7) | 0.48559 (7) | 0.0000 | 0.0377 (2) | |
P1 | 0.2993 (2) | 0.3605 (2) | 0.05647 (6) | 0.0399 (5) | |
S1 | 0.6481 (2) | 0.6901 (2) | 0.05082 (7) | 0.0592 (6) | |
C1 | 0.5327 (8) | 0.6409 (8) | 0.0997 (2) | 0.0408 (18) | |
C2 | 0.3770 (9) | 0.4982 (8) | 0.1037 (2) | 0.0397 (18) | |
C3 | 0.2892 (10) | 0.4667 (9) | 0.1433 (2) | 0.060 (2) | |
H3 | 0.1854 | 0.3719 | 0.1458 | 0.072* | |
C4 | 0.3528 (12) | 0.5730 (12) | 0.1790 (2) | 0.072 (3) | |
H4 | 0.2918 | 0.5509 | 0.2051 | 0.086* | |
C5 | 0.5077 (12) | 0.7126 (11) | 0.1757 (3) | 0.069 (3) | |
H5 | 0.5526 | 0.7837 | 0.1999 | 0.083* | |
C6 | 0.5958 (10) | 0.7467 (9) | 0.1367 (2) | 0.059 (2) | |
H6 | 0.6995 | 0.8419 | 0.1347 | 0.070* | |
C7 | 0.2670 (9) | 0.1641 (8) | 0.0782 (2) | 0.0457 (19) | |
C8 | 0.1239 (11) | 0.0432 (10) | 0.0973 (3) | 0.076 (3) | |
H8 | 0.0317 | 0.0570 | 0.0987 | 0.091* | |
C9 | 0.1143 (15) | −0.0996 (12) | 0.1145 (3) | 0.095 (3) | |
H9 | 0.0142 | −0.1808 | 0.1265 | 0.114* | |
C10 | 0.2415 (15) | −0.1239 (12) | 0.1144 (3) | 0.083 (3) | |
H10 | 0.2336 | −0.2182 | 0.1275 | 0.100* | |
C11 | 0.3848 (12) | −0.0089 (12) | 0.0949 (3) | 0.085 (3) | |
H11 | 0.4754 | −0.0254 | 0.0939 | 0.102* | |
C12 | 0.3967 (11) | 0.1320 (11) | 0.0765 (2) | 0.064 (2) | |
H12 | 0.4949 | 0.2079 | 0.0625 | 0.077* | |
C13 | 0.0948 (8) | 0.3330 (8) | 0.0457 (2) | 0.0414 (19) | |
C14 | 0.0640 (11) | 0.4611 (12) | 0.0535 (2) | 0.064 (2) | |
H14 | 0.1450 | 0.5570 | 0.0673 | 0.076* | |
C15 | −0.0844 (10) | 0.4507 (12) | 0.0413 (3) | 0.065 (3) | |
H15 | −0.1031 | 0.5386 | 0.0465 | 0.078* | |
C16 | −0.2044 (12) | 0.3062 (16) | 0.0212 (3) | 0.094 (4) | |
H16 | −0.3033 | 0.2980 | 0.0118 | 0.113* | |
C17 | −0.1781 (11) | 0.1752 (13) | 0.0151 (3) | 0.105 (3) | |
H17 | −0.2609 | 0.0766 | 0.0029 | 0.125* | |
C18 | −0.0297 (10) | 0.1907 (11) | 0.0272 (3) | 0.080 (3) | |
H18 | −0.0127 | 0.1014 | 0.0228 | 0.096* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd | 0.0332 (3) | 0.0332 (3) | 0.0451 (4) | 0.0155 (4) | −0.0016 (2) | 0.0016 (2) |
P1 | 0.0406 (11) | 0.0357 (12) | 0.0438 (12) | 0.0193 (9) | −0.0009 (9) | 0.0022 (9) |
S1 | 0.0476 (13) | 0.0509 (13) | 0.0634 (14) | 0.0129 (10) | −0.0031 (10) | −0.0121 (11) |
C1 | 0.051 (5) | 0.038 (4) | 0.042 (4) | 0.029 (4) | −0.011 (4) | −0.002 (3) |
C2 | 0.050 (5) | 0.041 (4) | 0.037 (4) | 0.029 (4) | −0.002 (4) | 0.000 (3) |
C3 | 0.094 (7) | 0.061 (5) | 0.034 (5) | 0.046 (5) | −0.007 (5) | −0.002 (4) |
C4 | 0.105 (8) | 0.091 (7) | 0.038 (5) | 0.064 (7) | 0.003 (5) | 0.005 (5) |
C5 | 0.105 (8) | 0.067 (6) | 0.048 (6) | 0.053 (6) | −0.025 (5) | −0.019 (5) |
C6 | 0.057 (6) | 0.057 (5) | 0.062 (5) | 0.029 (5) | −0.010 (5) | −0.018 (4) |
C7 | 0.050 (5) | 0.035 (5) | 0.042 (4) | 0.014 (4) | 0.003 (3) | 0.002 (3) |
C8 | 0.073 (6) | 0.046 (6) | 0.111 (7) | 0.033 (5) | 0.040 (5) | 0.031 (5) |
C9 | 0.119 (10) | 0.055 (7) | 0.103 (8) | 0.038 (7) | 0.040 (8) | 0.039 (6) |
C10 | 0.138 (9) | 0.044 (6) | 0.069 (6) | 0.046 (7) | −0.023 (6) | 0.000 (5) |
C11 | 0.096 (8) | 0.079 (8) | 0.100 (8) | 0.059 (7) | −0.039 (6) | −0.006 (6) |
C12 | 0.046 (6) | 0.064 (6) | 0.082 (6) | 0.027 (4) | −0.004 (5) | 0.011 (5) |
C13 | 0.040 (4) | 0.039 (5) | 0.040 (4) | 0.016 (4) | 0.010 (3) | 0.003 (3) |
C14 | 0.063 (6) | 0.071 (7) | 0.060 (5) | 0.036 (5) | 0.014 (5) | 0.023 (5) |
C15 | 0.056 (5) | 0.096 (8) | 0.065 (6) | 0.055 (6) | 0.005 (4) | 0.012 (5) |
C16 | 0.068 (7) | 0.185 (13) | 0.059 (6) | 0.085 (9) | 0.018 (5) | 0.027 (7) |
C17 | 0.053 (6) | 0.153 (10) | 0.119 (7) | 0.060 (7) | −0.031 (6) | −0.039 (7) |
C18 | 0.059 (6) | 0.095 (8) | 0.095 (7) | 0.045 (6) | −0.012 (5) | −0.021 (6) |
Pd—P1i | 2.2861 (18) | C8—C9 | 1.386 (10) |
Pd—P1 | 2.2861 (18) | C8—H8 | 0.9300 |
Pd—S1 | 2.316 (2) | C9—C10 | 1.312 (10) |
Pd—S1i | 2.316 (2) | C9—H9 | 0.9300 |
P1—C2 | 1.805 (7) | C10—C11 | 1.358 (11) |
P1—C7 | 1.818 (7) | C10—H10 | 0.9300 |
P1—C13 | 1.818 (7) | C11—C12 | 1.375 (10) |
S1—C1 | 1.740 (7) | C11—H11 | 0.9300 |
C1—C2 | 1.398 (8) | C12—H12 | 0.9300 |
C1—C6 | 1.405 (8) | C13—C18 | 1.367 (9) |
C2—C3 | 1.390 (9) | C13—C14 | 1.379 (9) |
C3—C4 | 1.376 (9) | C14—C15 | 1.384 (9) |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.379 (11) | C15—C16 | 1.386 (11) |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C5—C6 | 1.374 (9) | C16—C17 | 1.369 (12) |
C5—H5 | 0.9300 | C16—H16 | 0.9300 |
C6—H6 | 0.9300 | C17—C18 | 1.364 (10) |
C7—C8 | 1.368 (9) | C17—H17 | 0.9300 |
C7—C12 | 1.382 (8) | C18—H18 | 0.9300 |
P1i—Pd—P1 | 101.33 (9) | C7—C8—C9 | 121.0 (9) |
P1i—Pd—S1 | 171.41 (7) | C7—C8—H8 | 119.5 |
P1—Pd—S1 | 86.90 (7) | C9—C8—H8 | 119.5 |
P1i—Pd—S1i | 86.90 (7) | C10—C9—C8 | 122.2 (11) |
P1—Pd—S1i | 171.41 (7) | C10—C9—H9 | 118.9 |
S1—Pd—S1i | 85.00 (11) | C8—C9—H9 | 118.9 |
C2—P1—C7 | 103.7 (3) | C9—C10—C11 | 118.7 (11) |
C2—P1—C13 | 105.1 (3) | C9—C10—H10 | 120.6 |
C7—P1—C13 | 106.7 (3) | C11—C10—H10 | 120.6 |
C2—P1—Pd | 106.9 (2) | C10—C11—C12 | 120.3 (10) |
C7—P1—Pd | 118.7 (2) | C10—C11—H11 | 119.9 |
C13—P1—Pd | 114.4 (2) | C12—C11—H11 | 119.9 |
C1—S1—Pd | 106.1 (2) | C11—C12—C7 | 122.0 (9) |
C2—C1—C6 | 117.9 (7) | C11—C12—H12 | 119.0 |
C2—C1—S1 | 122.3 (5) | C7—C12—H12 | 119.0 |
C6—C1—S1 | 119.8 (6) | C18—C13—C14 | 117.7 (7) |
C3—C2—C1 | 119.7 (6) | C18—C13—P1 | 122.0 (6) |
C3—C2—P1 | 122.7 (6) | C14—C13—P1 | 120.2 (6) |
C1—C2—P1 | 117.6 (6) | C13—C14—C15 | 121.8 (10) |
C4—C3—C2 | 121.3 (8) | C13—C14—H14 | 119.1 |
C4—C3—H3 | 119.3 | C15—C14—H14 | 119.1 |
C2—C3—H3 | 119.3 | C14—C15—C16 | 118.3 (10) |
C3—C4—C5 | 119.5 (8) | C14—C15—H15 | 120.8 |
C3—C4—H4 | 120.2 | C16—C15—H15 | 120.8 |
C5—C4—H4 | 120.2 | C17—C16—C15 | 120.4 (9) |
C6—C5—C4 | 120.0 (7) | C17—C16—H16 | 119.8 |
C6—C5—H5 | 120.0 | C15—C16—H16 | 119.8 |
C4—C5—H5 | 120.0 | C18—C17—C16 | 119.5 (10) |
C5—C6—C1 | 121.5 (7) | C18—C17—H17 | 120.3 |
C5—C6—H6 | 119.2 | C16—C17—H17 | 120.3 |
C1—C6—H6 | 119.2 | C17—C18—C13 | 122.2 (8) |
C8—C7—C12 | 115.7 (8) | C17—C18—H18 | 118.9 |
C8—C7—P1 | 125.5 (6) | C13—C18—H18 | 118.9 |
C12—C7—P1 | 118.8 (6) | ||
P1i—Pd—P1—C2 | −177.7 (2) | S1—C1—C6—C5 | 179.5 (6) |
S1—Pd—P1—C2 | 4.8 (2) | C2—P1—C7—C8 | 89.7 (7) |
S1i—Pd—P1—C2 | −14.7 (6) | C13—P1—C7—C8 | −21.0 (8) |
P1i—Pd—P1—C7 | 65.6 (2) | Pd—P1—C7—C8 | −152.0 (6) |
S1—Pd—P1—C7 | −111.9 (3) | C2—P1—C7—C12 | −89.0 (7) |
S1i—Pd—P1—C7 | −131.4 (5) | C13—P1—C7—C12 | 160.3 (6) |
P1i—Pd—P1—C13 | −61.9 (2) | Pd—P1—C7—C12 | 29.3 (7) |
S1—Pd—P1—C13 | 120.6 (3) | C12—C7—C8—C9 | 1.4 (12) |
S1i—Pd—P1—C13 | 101.1 (5) | P1—C7—C8—C9 | −177.3 (7) |
P1i—Pd—S1—C1 | −167.4 (5) | C7—C8—C9—C10 | 1.8 (16) |
P1—Pd—S1—C1 | −4.1 (2) | C8—C9—C10—C11 | −3.2 (18) |
S1i—Pd—S1—C1 | 173.0 (2) | C9—C10—C11—C12 | 1.5 (16) |
Pd—S1—C1—C2 | 2.5 (6) | C10—C11—C12—C7 | 1.8 (14) |
Pd—S1—C1—C6 | −177.4 (5) | C8—C7—C12—C11 | −3.1 (12) |
C6—C1—C2—C3 | 1.0 (10) | P1—C7—C12—C11 | 175.7 (6) |
S1—C1—C2—C3 | −178.9 (5) | C2—P1—C13—C18 | −150.7 (6) |
C6—C1—C2—P1 | −178.5 (5) | C7—P1—C13—C18 | −40.9 (7) |
S1—C1—C2—P1 | 1.6 (8) | Pd—P1—C13—C18 | 92.5 (6) |
C7—P1—C2—C3 | −58.1 (6) | C2—P1—C13—C14 | 33.4 (6) |
C13—P1—C2—C3 | 53.8 (6) | C7—P1—C13—C14 | 143.1 (5) |
Pd—P1—C2—C3 | 175.7 (5) | Pd—P1—C13—C14 | −83.5 (6) |
C7—P1—C2—C1 | 121.4 (6) | C18—C13—C14—C15 | −3.0 (11) |
C13—P1—C2—C1 | −126.8 (5) | P1—C13—C14—C15 | 173.1 (6) |
Pd—P1—C2—C1 | −4.9 (6) | C13—C14—C15—C16 | 0.7 (12) |
C1—C2—C3—C4 | −0.3 (11) | C14—C15—C16—C17 | 2.4 (14) |
P1—C2—C3—C4 | 179.1 (6) | C15—C16—C17—C18 | −3.0 (14) |
C2—C3—C4—C5 | −0.9 (11) | C16—C17—C18—C13 | 0.5 (14) |
C3—C4—C5—C6 | 1.5 (12) | C14—C13—C18—C17 | 2.4 (12) |
C4—C5—C6—C1 | −0.8 (11) | P1—C13—C18—C17 | −173.6 (6) |
C2—C1—C6—C5 | −0.4 (10) |
Symmetry code: (i) y, x, −z. |
Experimental details
Crystal data | |
Chemical formula | [Pd(C18H14PS)2] |
Mr | 693.04 |
Crystal system, space group | Trigonal, P3221 |
Temperature (K) | 298 |
a, c (Å) | 9.306 (1), 30.069 (8) |
V (Å3) | 2255.2 (7) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.16 × 0.07 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.877, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18737, 2749, 1811 |
Rint | 0.113 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.084, 0.82 |
No. of reflections | 2749 |
No. of parameters | 186 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.40, −0.31 |
Absolute structure | Flack (1983), 1113 Friedel Pairs |
Absolute structure parameter | −0.05 (6) |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).
Pd—P1 | 2.2861 (18) | Pd—S1 | 2.316 (2) |
P1i—Pd—P1 | 101.33 (9) | P1—Pd—S1 | 86.90 (7) |
P1i—Pd—S1 | 171.41 (7) | S1—Pd—S1i | 85.00 (11) |
Symmetry code: (i) y, x, −z. |
Acknowledgements
The support of this research by CONACYT (F58692) and DGAPA-UNAM (IN227008) is gratefully acknowledged.
References
Andreasen, L. V., Simonsen, O. & Wernberg, O. (1999). Inorg. Chim. Acta, 295, 153–163. Web of Science CSD CrossRef CAS Google Scholar
Braunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. 40, 680–699. Web of Science CrossRef CAS Google Scholar
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Canseco-Gonzalez, D., Gómez-Benítez, D., Baldovino-Pantaleon, O., Hernandez-Ortega, S. & Morales-Morales, D. (2004). J. Organomet. Chem. 689, 174–180. Web of Science CSD CrossRef CAS Google Scholar
Canseco-Gonzalez, D., Gómez-Benítez, D., Hernandez-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2003). J. Organomet. Chem. 679, 101–109. Web of Science CSD CrossRef CAS Google Scholar
Dilworth, J. R., Morales, D. & Zheng, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 3007–3015. Web of Science CSD CrossRef Google Scholar
Dilworth, J. R. & Weatley, N. (2000). Coord. Chem. Rev. 199, 89–158. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gómez-Benítez, V., Hernández-Ortega, S. & Morales-Morales, D. (2003). Inorg. Chim. Acta, 346, 256–260. Web of Science CSD CrossRef CAS Google Scholar
Gómez-Benítez, V., Hernánez-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007b). Inorg. Chim. Acta, 360, 2128–2138. Google Scholar
Gómez-Benítez, V., Toscano, R. A. & Morales-Morales, D. (2007a). Inorg. Chem. Commun. 10, 1–6. Google Scholar
Morales-Morales, D., Redón, R., Zheng, Y. & Dilworth, J. R. (2002b). Inorg. Chim. Acta, 328, 39–44. Web of Science CSD CrossRef CAS Google Scholar
Morales-Morales, D. S., Rodríguez-Morales, S., Dilworth, J. R., Sousa-Pedrares, A. & Zheng, Y. (2002a). Inorg. Chim. Acta, 332, 101–107. Web of Science CSD CrossRef CAS Google Scholar
Ortner, K., Hilditch, L., Zheng, Z., Dilworth, J. R. & Abram, U. (2000). Inorg. Chem. 39, 2801–2806. Web of Science CSD CrossRef PubMed CAS Google Scholar
Real, J., Prat, E., Polo, A., Alvarez-Larena, A. & Piniella, J. F. (2000). Inorg. Chem. Commun. 3, 221–223. Web of Science CrossRef CAS Google Scholar
Ríos-Moreno, G., Toscano, R. A., Redón, R., Nakano, H., Okuyama, Y. & Morales-Morales, D. (2005). Inorg. Chim. Acta, 358, 303–309. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taguchi, N., Kashiwabara, K., Nakajima, K., Kawaguchi, H. & Tatsumi, K. (1999). J. Organomet. Chem. 587, 290–298. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, attention has increasingly been paid to the coordination chemistry of polydentate ligands incorporating both thiolate and tertiary phosphine donor ligands, as their combination is likely to confer unusual structures and reactivities on their metal complexes (Dilworth, et al., 2000; Morales-Morales et al., 2002a; Gómez-Benítez et al., 2003). These complexes have shown an intriguing variety of structures (Andreasen et al. 1999; Taguchi et al., 1999) or unusual oxidation states and enhanced solubility (Ortner et al., 2000), making these species excellent candidates for further studies in reactivity. Moreover, the presence of these ligands in the coordination sphere of transition metal complexes may render interesting behaviours in solution as these ligands can be capable of full or partial de-ligation (hemilability) (Dilworth & Weatley, 2000; Braunstein & Naud, 2001) being able to provide important extra coordination sites for incoming substrates during a catalytic process (Dilworth & Weatley, 2000, Braunstein & Naud, 2001). Thus, given our continuous interest in the synthesis of transition metal complexes bearing P—S hybrid ligands (Morales-Morales et al., 2002a, 2002b; Gómez-Benítez et al., 2007a, 2007b; Ríos-Moreno et al., 2005; Canseco-Gonzalez et al., 2003, 2004) we report the crystal structure of a pseudo-polymorph of the Pd(II) complex cis- [Pd(Ph2PC6H4-2-S)2] (Real et al., 2000; Canseco-Gonzalez et al., 2003)
The asymmetric unit cointains only half of molecule, with the Pd atom in special position of site symmetry 2. The structure of the title compound is shown with the numbering scheme in Fig. 1. The geometric parameters do not differ significantly from the values reported in the previously described polymorphs. The complex exhibits the Pd center into a slightly distorted square planar environment with the two P—S chelating ligands adopting a cis conformation.