metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis­[2-(di­phenyl­phosphino)benzene­thiolato-κ2P,S]palladium(II)

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, D. F., México.
*Correspondence e-mail: damor@servidor.unam.mx, simonho@servidor.unam.mx

(Received 4 July 2008; accepted 19 August 2008; online 23 August 2008)

The title compound, [Pd(C18H14PS)2], was synthesized by the reaction of (Ph2PC6H4SH) with [PdCl2(NCC6H5)2] in a 2:1 molar ratio in the presence of a slight excess of NEt3 as base in dichloro­methane. The compound crystallizes with the Pd(II) atom on a twofold rotation axis. The palladium center has a slightly distorted square-planar environment, with the two P—S chelating ligands adopting a cis configuration. The present structure is a pseudo-polymorph of [Pd(C18H14PS)2]·CH2Cl2.

Related literature

For related literature, see: Andreasen et al. (1999[Andreasen, L. V., Simonsen, O. & Wernberg, O. (1999). Inorg. Chim. Acta, 295, 153-163.]); Braunstein & Naud (2001[Braunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. 40, 680-699.]); Real et al. (2000[Real, J., Prat, E., Polo, A., Alvarez-Larena, A. & Piniella, J. F. (2000). Inorg. Chem. Commun. 3, 221-223.]); Canseco-Gonzalez et al. (2003[Canseco-Gonzalez, D., Gómez-Benítez, D., Hernandez-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2003). J. Organomet. Chem. 679, 101-109.], 2004[Canseco-Gonzalez, D., Gómez-Benítez, D., Baldovino-Pantaleon, O., Hernandez-Ortega, S. & Morales-Morales, D. (2004). J. Organomet. Chem. 689, 174-180.]); Dilworth & Weatley (2000[Dilworth, J. R. & Weatley, N. (2000). Coord. Chem. Rev. 199, 89-158.]); Dilworth et al. (2000[Dilworth, J. R., Morales, D. & Zheng, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 3007-3015.]); Gómez-Benítez et al. (2003[Gómez-Benítez, V., Hernández-Ortega, S. & Morales-Morales, D. (2003). Inorg. Chim. Acta, 346, 256-260.], 2007a[Gómez-Benítez, V., Toscano, R. A. & Morales-Morales, D. (2007a). Inorg. Chem. Commun. 10, 1-6.],b[Gómez-Benítez, V., Hernánez-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007b). Inorg. Chim. Acta, 360, 2128-2138.]); Morales-Morales et al. (2002a[Morales-Morales, D. S., Rodríguez-Morales, S., Dilworth, J. R., Sousa-Pedrares, A. & Zheng, Y. (2002a). Inorg. Chim. Acta, 332, 101-107.],b[Morales-Morales, D., Redón, R., Zheng, Y. & Dilworth, J. R. (2002b). Inorg. Chim. Acta, 328, 39-44.]); Ortner et al. (2000[Ortner, K., Hilditch, L., Zheng, Z., Dilworth, J. R. & Abram, U. (2000). Inorg. Chem. 39, 2801-2806.]); Ríos-Moreno et al. (2005[Ríos-Moreno, G., Toscano, R. A., Redón, R., Nakano, H., Okuyama, Y. & Morales-Morales, D. (2005). Inorg. Chim. Acta, 358, 303-309.]); Taguchi et al. (1999[Taguchi, N., Kashiwabara, K., Nakajima, K., Kawaguchi, H. & Tatsumi, K. (1999). J. Organomet. Chem. 587, 290-298.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C18H14PS)2]

  • Mr = 693.04

  • Trigonal, P 32 21

  • a = 9.306 (1) Å

  • c = 30.069 (8) Å

  • V = 2255.2 (7) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 298 (2) K

  • 0.16 × 0.07 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.877, Tmax = 0.967

  • 18737 measured reflections

  • 2749 independent reflections

  • 1811 reflections with I > 2σ(I)

  • Rint = 0.113

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.084

  • S = 0.82

  • 2749 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1113 Friedel Pairs

  • Flack parameter: −0.05 (6)

Table 1
Selected geometric parameters (Å, °)

Pd—P1 2.2861 (18)
Pd—S1 2.316 (2)
P1i—Pd—P1 101.33 (9)
P1i—Pd—S1 171.41 (7)
P1—Pd—S1 86.90 (7)
S1—Pd—S1i 85.00 (11)
Symmetry code: (i) y, x, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, attention has increasingly been paid to the coordination chemistry of polydentate ligands incorporating both thiolate and tertiary phosphine donor ligands, as their combination is likely to confer unusual structures and reactivities on their metal complexes (Dilworth, et al., 2000; Morales-Morales et al., 2002a; Gómez-Benítez et al., 2003). These complexes have shown an intriguing variety of structures (Andreasen et al. 1999; Taguchi et al., 1999) or unusual oxidation states and enhanced solubility (Ortner et al., 2000), making these species excellent candidates for further studies in reactivity. Moreover, the presence of these ligands in the coordination sphere of transition metal complexes may render interesting behaviours in solution as these ligands can be capable of full or partial de-ligation (hemilability) (Dilworth & Weatley, 2000; Braunstein & Naud, 2001) being able to provide important extra coordination sites for incoming substrates during a catalytic process (Dilworth & Weatley, 2000, Braunstein & Naud, 2001). Thus, given our continuous interest in the synthesis of transition metal complexes bearing P—S hybrid ligands (Morales-Morales et al., 2002a, 2002b; Gómez-Benítez et al., 2007a, 2007b; Ríos-Moreno et al., 2005; Canseco-Gonzalez et al., 2003, 2004) we report the crystal structure of a pseudo-polymorph of the Pd(II) complex cis- [Pd(Ph2PC6H4-2-S)2] (Real et al., 2000; Canseco-Gonzalez et al., 2003)

The asymmetric unit cointains only half of molecule, with the Pd atom in special position of site symmetry 2. The structure of the title compound is shown with the numbering scheme in Fig. 1. The geometric parameters do not differ significantly from the values reported in the previously described polymorphs. The complex exhibits the Pd center into a slightly distorted square planar environment with the two P—S chelating ligands adopting a cis conformation.

Related literature top

For related literature, see: Andreasen et al. (1999); Braunstein & Naud (2001); Real et al. (2000); Canseco-Gonzalez et al. (2003, 2004); Dilworth & Weatley (2000); Dilworth et al. (2000); Gómez-Benítez et al. (2003, 2007a,b); Morales-Morales, Redón, Zheng & Dilworth (2002a,b); Ortner et al. (2000); Ríos-Moreno et al. (2005); Taguchi et al. (1999).

Experimental top

Synthesis of cis-[Pd(Ph2PC6H4–2-S)2] (I). To a solution of (Ph2PC6H4–2-SH) (34 mg, 0.12 mmol) in CH2Cl2 (20 ml), NEt3 (13 mg, 0.13 mmol) and a CH2Cl2 solution (30 ml) of [Pd(Cl)2(NCC6H5)2] (22 mg, 0.058 mmol) were added under stirring. The resulting mixture was allowed to stir overnight. After this time, formation of a pale yellow precipitated was noticed, the product was filtered off under vacuum and washed twice with methanol. Recrystallization from a double layer solvent system CH2Cl2/MeOH afforded complex I as a microcrystalline yellow powder. Yield 87.5%. 1H-NMR (300 MHz, CDCl3), (7.71–6.79 (m, Ph, 28H); 31P-NMR (121 MHz, CDCl3), (-42.42 (s). Elem. Anal. Calculated for [C36H28P2S2Pd] Calc. %: C: 64.20, H: 4.00. Found %: C: 64.00, H: 4.20. MS-FAB+ [M+] = 692 m/z.

Refinement top

H atoms were included in calculated positions (C—H = 0.93 Å), and refined using a riding model,with Uiso(H) = 1.2Ueq of the carrier atom. Geometrical restraints were applied in phenyl rings on P atom.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atoms numbering scheme. Displacement ellipsoids are shown at the 40% probability level. All H atoms have been omitted for clarity. The symmetry operator for generating equivalent atoms symmetry operator; y, x, -z.
cis-Bis[2-(diphenylphosphino)benzenethiolato- κ2P,S]palladium(II) top
Crystal data top
[Pd(C18H14PS)2]Dx = 1.531 Mg m3
Mr = 693.04Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3221Cell parameters from 2935 reflections
Hall symbol: P 32 2"θ = 2.5–19.9°
a = 9.306 (1) ŵ = 0.89 mm1
c = 30.069 (8) ÅT = 298 K
V = 2255.2 (7) Å3Prism, yellow
Z = 30.16 × 0.07 × 0.04 mm
F(000) = 1056
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2749 independent reflections
Radiation source: fine-focus sealed tube1811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.113
Detector resolution: 0.83 pixels mm-1θmax = 25.3°, θmin = 2.0°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.877, Tmax = 0.967l = 3636
18737 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.001
2749 reflectionsΔρmax = 1.40 e Å3
186 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 1113 Friedel Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
[Pd(C18H14PS)2]Z = 3
Mr = 693.04Mo Kα radiation
Trigonal, P3221µ = 0.89 mm1
a = 9.306 (1) ÅT = 298 K
c = 30.069 (8) Å0.16 × 0.07 × 0.04 mm
V = 2255.2 (7) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2749 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1811 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.967Rint = 0.113
18737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.084Δρmax = 1.40 e Å3
S = 0.82Δρmin = 0.31 e Å3
2749 reflectionsAbsolute structure: Flack (1983), 1113 Friedel Pairs
186 parametersAbsolute structure parameter: 0.05 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.48559 (7)0.48559 (7)0.00000.0377 (2)
P10.2993 (2)0.3605 (2)0.05647 (6)0.0399 (5)
S10.6481 (2)0.6901 (2)0.05082 (7)0.0592 (6)
C10.5327 (8)0.6409 (8)0.0997 (2)0.0408 (18)
C20.3770 (9)0.4982 (8)0.1037 (2)0.0397 (18)
C30.2892 (10)0.4667 (9)0.1433 (2)0.060 (2)
H30.18540.37190.14580.072*
C40.3528 (12)0.5730 (12)0.1790 (2)0.072 (3)
H40.29180.55090.20510.086*
C50.5077 (12)0.7126 (11)0.1757 (3)0.069 (3)
H50.55260.78370.19990.083*
C60.5958 (10)0.7467 (9)0.1367 (2)0.059 (2)
H60.69950.84190.13470.070*
C70.2670 (9)0.1641 (8)0.0782 (2)0.0457 (19)
C80.1239 (11)0.0432 (10)0.0973 (3)0.076 (3)
H80.03170.05700.09870.091*
C90.1143 (15)0.0996 (12)0.1145 (3)0.095 (3)
H90.01420.18080.12650.114*
C100.2415 (15)0.1239 (12)0.1144 (3)0.083 (3)
H100.23360.21820.12750.100*
C110.3848 (12)0.0089 (12)0.0949 (3)0.085 (3)
H110.47540.02540.09390.102*
C120.3967 (11)0.1320 (11)0.0765 (2)0.064 (2)
H120.49490.20790.06250.077*
C130.0948 (8)0.3330 (8)0.0457 (2)0.0414 (19)
C140.0640 (11)0.4611 (12)0.0535 (2)0.064 (2)
H140.14500.55700.06730.076*
C150.0844 (10)0.4507 (12)0.0413 (3)0.065 (3)
H150.10310.53860.04650.078*
C160.2044 (12)0.3062 (16)0.0212 (3)0.094 (4)
H160.30330.29800.01180.113*
C170.1781 (11)0.1752 (13)0.0151 (3)0.105 (3)
H170.26090.07660.00290.125*
C180.0297 (10)0.1907 (11)0.0272 (3)0.080 (3)
H180.01270.10140.02280.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.0332 (3)0.0332 (3)0.0451 (4)0.0155 (4)0.0016 (2)0.0016 (2)
P10.0406 (11)0.0357 (12)0.0438 (12)0.0193 (9)0.0009 (9)0.0022 (9)
S10.0476 (13)0.0509 (13)0.0634 (14)0.0129 (10)0.0031 (10)0.0121 (11)
C10.051 (5)0.038 (4)0.042 (4)0.029 (4)0.011 (4)0.002 (3)
C20.050 (5)0.041 (4)0.037 (4)0.029 (4)0.002 (4)0.000 (3)
C30.094 (7)0.061 (5)0.034 (5)0.046 (5)0.007 (5)0.002 (4)
C40.105 (8)0.091 (7)0.038 (5)0.064 (7)0.003 (5)0.005 (5)
C50.105 (8)0.067 (6)0.048 (6)0.053 (6)0.025 (5)0.019 (5)
C60.057 (6)0.057 (5)0.062 (5)0.029 (5)0.010 (5)0.018 (4)
C70.050 (5)0.035 (5)0.042 (4)0.014 (4)0.003 (3)0.002 (3)
C80.073 (6)0.046 (6)0.111 (7)0.033 (5)0.040 (5)0.031 (5)
C90.119 (10)0.055 (7)0.103 (8)0.038 (7)0.040 (8)0.039 (6)
C100.138 (9)0.044 (6)0.069 (6)0.046 (7)0.023 (6)0.000 (5)
C110.096 (8)0.079 (8)0.100 (8)0.059 (7)0.039 (6)0.006 (6)
C120.046 (6)0.064 (6)0.082 (6)0.027 (4)0.004 (5)0.011 (5)
C130.040 (4)0.039 (5)0.040 (4)0.016 (4)0.010 (3)0.003 (3)
C140.063 (6)0.071 (7)0.060 (5)0.036 (5)0.014 (5)0.023 (5)
C150.056 (5)0.096 (8)0.065 (6)0.055 (6)0.005 (4)0.012 (5)
C160.068 (7)0.185 (13)0.059 (6)0.085 (9)0.018 (5)0.027 (7)
C170.053 (6)0.153 (10)0.119 (7)0.060 (7)0.031 (6)0.039 (7)
C180.059 (6)0.095 (8)0.095 (7)0.045 (6)0.012 (5)0.021 (6)
Geometric parameters (Å, º) top
Pd—P1i2.2861 (18)C8—C91.386 (10)
Pd—P12.2861 (18)C8—H80.9300
Pd—S12.316 (2)C9—C101.312 (10)
Pd—S1i2.316 (2)C9—H90.9300
P1—C21.805 (7)C10—C111.358 (11)
P1—C71.818 (7)C10—H100.9300
P1—C131.818 (7)C11—C121.375 (10)
S1—C11.740 (7)C11—H110.9300
C1—C21.398 (8)C12—H120.9300
C1—C61.405 (8)C13—C181.367 (9)
C2—C31.390 (9)C13—C141.379 (9)
C3—C41.376 (9)C14—C151.384 (9)
C3—H30.9300C14—H140.9300
C4—C51.379 (11)C15—C161.386 (11)
C4—H40.9300C15—H150.9300
C5—C61.374 (9)C16—C171.369 (12)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—C181.364 (10)
C7—C81.368 (9)C17—H170.9300
C7—C121.382 (8)C18—H180.9300
P1i—Pd—P1101.33 (9)C7—C8—C9121.0 (9)
P1i—Pd—S1171.41 (7)C7—C8—H8119.5
P1—Pd—S186.90 (7)C9—C8—H8119.5
P1i—Pd—S1i86.90 (7)C10—C9—C8122.2 (11)
P1—Pd—S1i171.41 (7)C10—C9—H9118.9
S1—Pd—S1i85.00 (11)C8—C9—H9118.9
C2—P1—C7103.7 (3)C9—C10—C11118.7 (11)
C2—P1—C13105.1 (3)C9—C10—H10120.6
C7—P1—C13106.7 (3)C11—C10—H10120.6
C2—P1—Pd106.9 (2)C10—C11—C12120.3 (10)
C7—P1—Pd118.7 (2)C10—C11—H11119.9
C13—P1—Pd114.4 (2)C12—C11—H11119.9
C1—S1—Pd106.1 (2)C11—C12—C7122.0 (9)
C2—C1—C6117.9 (7)C11—C12—H12119.0
C2—C1—S1122.3 (5)C7—C12—H12119.0
C6—C1—S1119.8 (6)C18—C13—C14117.7 (7)
C3—C2—C1119.7 (6)C18—C13—P1122.0 (6)
C3—C2—P1122.7 (6)C14—C13—P1120.2 (6)
C1—C2—P1117.6 (6)C13—C14—C15121.8 (10)
C4—C3—C2121.3 (8)C13—C14—H14119.1
C4—C3—H3119.3C15—C14—H14119.1
C2—C3—H3119.3C14—C15—C16118.3 (10)
C3—C4—C5119.5 (8)C14—C15—H15120.8
C3—C4—H4120.2C16—C15—H15120.8
C5—C4—H4120.2C17—C16—C15120.4 (9)
C6—C5—C4120.0 (7)C17—C16—H16119.8
C6—C5—H5120.0C15—C16—H16119.8
C4—C5—H5120.0C18—C17—C16119.5 (10)
C5—C6—C1121.5 (7)C18—C17—H17120.3
C5—C6—H6119.2C16—C17—H17120.3
C1—C6—H6119.2C17—C18—C13122.2 (8)
C8—C7—C12115.7 (8)C17—C18—H18118.9
C8—C7—P1125.5 (6)C13—C18—H18118.9
C12—C7—P1118.8 (6)
P1i—Pd—P1—C2177.7 (2)S1—C1—C6—C5179.5 (6)
S1—Pd—P1—C24.8 (2)C2—P1—C7—C889.7 (7)
S1i—Pd—P1—C214.7 (6)C13—P1—C7—C821.0 (8)
P1i—Pd—P1—C765.6 (2)Pd—P1—C7—C8152.0 (6)
S1—Pd—P1—C7111.9 (3)C2—P1—C7—C1289.0 (7)
S1i—Pd—P1—C7131.4 (5)C13—P1—C7—C12160.3 (6)
P1i—Pd—P1—C1361.9 (2)Pd—P1—C7—C1229.3 (7)
S1—Pd—P1—C13120.6 (3)C12—C7—C8—C91.4 (12)
S1i—Pd—P1—C13101.1 (5)P1—C7—C8—C9177.3 (7)
P1i—Pd—S1—C1167.4 (5)C7—C8—C9—C101.8 (16)
P1—Pd—S1—C14.1 (2)C8—C9—C10—C113.2 (18)
S1i—Pd—S1—C1173.0 (2)C9—C10—C11—C121.5 (16)
Pd—S1—C1—C22.5 (6)C10—C11—C12—C71.8 (14)
Pd—S1—C1—C6177.4 (5)C8—C7—C12—C113.1 (12)
C6—C1—C2—C31.0 (10)P1—C7—C12—C11175.7 (6)
S1—C1—C2—C3178.9 (5)C2—P1—C13—C18150.7 (6)
C6—C1—C2—P1178.5 (5)C7—P1—C13—C1840.9 (7)
S1—C1—C2—P11.6 (8)Pd—P1—C13—C1892.5 (6)
C7—P1—C2—C358.1 (6)C2—P1—C13—C1433.4 (6)
C13—P1—C2—C353.8 (6)C7—P1—C13—C14143.1 (5)
Pd—P1—C2—C3175.7 (5)Pd—P1—C13—C1483.5 (6)
C7—P1—C2—C1121.4 (6)C18—C13—C14—C153.0 (11)
C13—P1—C2—C1126.8 (5)P1—C13—C14—C15173.1 (6)
Pd—P1—C2—C14.9 (6)C13—C14—C15—C160.7 (12)
C1—C2—C3—C40.3 (11)C14—C15—C16—C172.4 (14)
P1—C2—C3—C4179.1 (6)C15—C16—C17—C183.0 (14)
C2—C3—C4—C50.9 (11)C16—C17—C18—C130.5 (14)
C3—C4—C5—C61.5 (12)C14—C13—C18—C172.4 (12)
C4—C5—C6—C10.8 (11)P1—C13—C18—C17173.6 (6)
C2—C1—C6—C50.4 (10)
Symmetry code: (i) y, x, z.

Experimental details

Crystal data
Chemical formula[Pd(C18H14PS)2]
Mr693.04
Crystal system, space groupTrigonal, P3221
Temperature (K)298
a, c (Å)9.306 (1), 30.069 (8)
V3)2255.2 (7)
Z3
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.16 × 0.07 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.877, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
18737, 2749, 1811
Rint0.113
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.084, 0.82
No. of reflections2749
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.40, 0.31
Absolute structureFlack (1983), 1113 Friedel Pairs
Absolute structure parameter0.05 (6)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Pd—P12.2861 (18)Pd—S12.316 (2)
P1i—Pd—P1101.33 (9)P1—Pd—S186.90 (7)
P1i—Pd—S1171.41 (7)S1—Pd—S1i85.00 (11)
Symmetry code: (i) y, x, z.
 

Acknowledgements

The support of this research by CONACYT (F58692) and DGAPA-UNAM (IN227008) is gratefully acknowledged.

References

First citationAndreasen, L. V., Simonsen, O. & Wernberg, O. (1999). Inorg. Chim. Acta, 295, 153–163.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. 40, 680–699.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanseco-Gonzalez, D., Gómez-Benítez, D., Baldovino-Pantaleon, O., Hernandez-Ortega, S. & Morales-Morales, D. (2004). J. Organomet. Chem. 689, 174–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationCanseco-Gonzalez, D., Gómez-Benítez, D., Hernandez-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2003). J. Organomet. Chem. 679, 101–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationDilworth, J. R., Morales, D. & Zheng, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 3007–3015.  Web of Science CSD CrossRef Google Scholar
First citationDilworth, J. R. & Weatley, N. (2000). Coord. Chem. Rev. 199, 89–158.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGómez-Benítez, V., Hernández-Ortega, S. & Morales-Morales, D. (2003). Inorg. Chim. Acta, 346, 256–260.  Web of Science CSD CrossRef CAS Google Scholar
First citationGómez-Benítez, V., Hernánez-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007b). Inorg. Chim. Acta, 360, 2128–2138.  Google Scholar
First citationGómez-Benítez, V., Toscano, R. A. & Morales-Morales, D. (2007a). Inorg. Chem. Commun. 10, 1–6.  Google Scholar
First citationMorales-Morales, D., Redón, R., Zheng, Y. & Dilworth, J. R. (2002b). Inorg. Chim. Acta, 328, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorales-Morales, D. S., Rodríguez-Morales, S., Dilworth, J. R., Sousa-Pedrares, A. & Zheng, Y. (2002a). Inorg. Chim. Acta, 332, 101–107.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrtner, K., Hilditch, L., Zheng, Z., Dilworth, J. R. & Abram, U. (2000). Inorg. Chem. 39, 2801–2806.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationReal, J., Prat, E., Polo, A., Alvarez-Larena, A. & Piniella, J. F. (2000). Inorg. Chem. Commun. 3, 221–223.  Web of Science CrossRef CAS Google Scholar
First citationRíos-Moreno, G., Toscano, R. A., Redón, R., Nakano, H., Okuyama, Y. & Morales-Morales, D. (2005). Inorg. Chim. Acta, 358, 303–309.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaguchi, N., Kashiwabara, K., Nakajima, K., Kawaguchi, H. & Tatsumi, K. (1999). J. Organomet. Chem. 587, 290–298.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds