metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Disodium 4,4′-oxydibenzoate

aSchool of Physics and Chemistry, Guizhou Normal University, Guiyang, Guizhou 550001, People's Republic of China, bCollege of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 July 2008; accepted 30 July 2008; online 6 August 2008)

The crystal structure of the title compound, 2Na+·C14H8O52−, consists of alternating layers of sodium cations and 4,4′-oxydibenzoate anions; the layers are perpendicular to the a axis, with the distance between the layers of cations (or anions) being half this axial length. The Na atoms are disordered over three sites [occupancies 0.775 (4), 0.781 (6) 0.444 (6)].

Related literature

For the crystal structure of 4,4′-oxybis(benzoic acid), see: Dey & Desiraju (2005[Dey, A. & Desiraju, G. R. (2005). Chem. Commun. pp. 2486-2488.]); Potts et al. (2007[Potts, S., Bredenkamp, M. W. & Gertenbach, J.-A. (2007). Acta Cryst. E63, o2887.]).

[Scheme 1]

Experimental

Crystal data
  • 2Na+·C14H8O52−

  • Mr = 302.18

  • Monoclinic, C c

  • a = 29.1091 (4) Å

  • b = 5.7801 (1) Å

  • c = 7.6429 (1) Å

  • β = 92.4420 (1)°

  • V = 1284.78 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 295 (2) K

  • 0.5 × 0.4 × 0.2 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.888, Tmax = 1.000 (expected range = 0.857–0.966)

  • 5002 measured reflections

  • 1471 independent reflections

  • 1464 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.135

  • S = 1.27

  • 1471 reflections

  • 203 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The crystal structure of disodium 4,4'-oxydibenzoate (Scheme I, Fig. 1) consists of alternating bands of sodium cations and 4,4'-oxydibenzoate anions. The two symmetry-independent sodium atoms over three positions. The lowest occupancy sodium atom is only weakly linked to two oxygen atoms, and probably "rattles" about in the crystal structure.

Related literature top

For the crystal structure of 4,4'-oxybis(benzoic acid), see: Dey & Desiraju (2005); Potts et al. (2007).

Experimental top

Betaine (0.047 g, 0.4 mmol), 4,4'-oxybis(benzoic acid) (0.103 g, 0.4 mmol) and guanidine hydrochloride (0.076 g, 0.8 mmol) were mixed in a molar ratio 1:1:2. The mixture was dissolved in mixture of ethanol (4 ml), 1 M sodium hydroxide (0.5 ml) and water (0.5 ml). Colorless crystals were obtained after about 10 days.

Refinement top

The Na1, Na2 and Na3 atoms were refined such that the total occupancy is two.

Carbon bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) 1.2Ueq(C).

Friedel pairs were merged as there are no anomalous scatterers.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the asymmetric unit of the title compound; displac ement ellipsoids are set at the 70% probability level. Hydrogeatoms are drawn as spheres of arbitrary radius. The two sodium atoms are disordered over three positions. Dashed lines denote the distances between them.
Disodium 4,4'-oxydibenzoate top
Crystal data top
2Na+·C14H8O52F(000) = 616
Mr = 302.18Dx = 1.562 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 29.1091 (4) ÅCell parameters from 4314 reflections
b = 5.7801 (1) Åθ = 4.0–27.5°
c = 7.6429 (1) ŵ = 0.18 mm1
β = 92.4420 (1)°T = 295 K
V = 1284.78 (3) Å3Block, colorless
Z = 40.5 × 0.4 × 0.2 mm
Data collection top
Bruker SMART APEXII
diffractometer
1471 independent reflections
Radiation source: fine-focus sealed tube1464 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 27.5°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3737
Tmin = 0.888, Tmax = 1.000k = 77
5002 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0883P)2 + 0.9438P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max = 0.001
1471 reflectionsΔρmax = 0.79 e Å3
203 parametersΔρmin = 0.27 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (4)
Crystal data top
2Na+·C14H8O52V = 1284.78 (3) Å3
Mr = 302.18Z = 4
Monoclinic, CcMo Kα radiation
a = 29.1091 (4) ŵ = 0.18 mm1
b = 5.7801 (1) ÅT = 295 K
c = 7.6429 (1) Å0.5 × 0.4 × 0.2 mm
β = 92.4420 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
1471 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1464 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 1.000Rint = 0.015
5002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.27Δρmax = 0.79 e Å3
1471 reflectionsΔρmin = 0.27 e Å3
203 parameters
Special details top

Experimental. A somewhat large crystal was used in the measurements, but this does not seem to have an adverse efffect on the quality of the diffraction data.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.50001 (5)0.1573 (3)0.50001 (18)0.0119 (4)0.775 (4)
Na20.44106 (5)0.3880 (3)0.84063 (18)0.0113 (5)0.781 (6)
Na30.47490 (10)0.7168 (5)0.7153 (4)0.0147 (9)0.444 (6)
O10.53701 (10)0.4833 (5)0.9932 (4)0.0273 (6)
O20.51425 (9)0.1864 (5)0.8264 (4)0.0243 (6)
O30.91491 (10)0.5648 (5)0.9768 (4)0.0279 (6)
O40.92132 (9)0.1917 (5)1.0487 (4)0.0249 (6)
O50.72485 (10)0.1735 (6)0.6575 (4)0.0338 (7)
C10.54493 (12)0.3222 (6)0.8891 (5)0.0199 (7)
C20.59376 (12)0.2835 (6)0.8364 (4)0.0199 (7)
C30.60419 (13)0.0883 (6)0.7386 (5)0.0234 (7)
H30.58120.01820.70880.028*
C40.64896 (13)0.0513 (7)0.6849 (5)0.0250 (7)
H40.65590.07930.62010.030*
C50.68284 (12)0.2121 (7)0.7296 (5)0.0230 (7)
C60.67343 (13)0.4048 (7)0.8307 (5)0.0251 (8)
H60.69660.50890.86340.030*
C70.62823 (12)0.4391 (7)0.8825 (5)0.0228 (7)
H70.62140.56850.94880.027*
C80.76546 (12)0.2304 (8)0.7501 (5)0.0261 (8)
C90.78630 (13)0.0650 (7)0.8574 (5)0.0266 (8)
H90.77130.07330.87920.032*
C100.82982 (14)0.1068 (7)0.9322 (5)0.0248 (7)
H100.84420.00521.00260.030*
C110.85196 (11)0.3161 (6)0.9022 (4)0.0194 (7)
C120.82984 (13)0.4838 (7)0.7983 (5)0.0243 (7)
H120.84400.62560.78130.029*
C130.78638 (13)0.4407 (7)0.7192 (5)0.0264 (7)
H130.77190.55090.64750.032*
C140.89941 (12)0.3616 (6)0.9821 (5)0.0200 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0114 (7)0.0098 (7)0.0144 (7)0.0005 (5)0.0009 (5)0.0005 (5)
Na20.0119 (8)0.0094 (7)0.0127 (8)0.0011 (5)0.0003 (5)0.0001 (5)
Na30.0169 (14)0.0144 (15)0.0127 (14)0.0013 (10)0.0008 (10)0.0004 (10)
O10.0230 (11)0.0294 (14)0.0299 (15)0.0020 (11)0.0043 (10)0.0037 (11)
O20.0183 (11)0.0254 (13)0.0293 (13)0.0020 (9)0.0007 (10)0.0005 (10)
O30.0262 (13)0.0292 (15)0.0282 (14)0.0081 (11)0.0015 (11)0.0009 (11)
O40.0209 (12)0.0281 (13)0.0254 (13)0.0042 (10)0.0017 (10)0.0008 (10)
O50.0171 (12)0.056 (2)0.0288 (14)0.0011 (12)0.0005 (10)0.0141 (13)
C10.0181 (15)0.0215 (15)0.0200 (15)0.0019 (12)0.0015 (12)0.0039 (12)
C20.0165 (15)0.0228 (16)0.0204 (15)0.0011 (12)0.0006 (12)0.0030 (12)
C30.0187 (16)0.0241 (17)0.0274 (18)0.0015 (13)0.0007 (13)0.0029 (13)
C40.0223 (17)0.0260 (17)0.0267 (17)0.0035 (15)0.0008 (13)0.0051 (14)
C50.0179 (16)0.0299 (17)0.0211 (15)0.0015 (13)0.0003 (12)0.0001 (13)
C60.0174 (16)0.0290 (19)0.0287 (17)0.0044 (13)0.0014 (13)0.0039 (15)
C70.0226 (17)0.0217 (16)0.0243 (17)0.0001 (13)0.0016 (13)0.0034 (12)
C80.0159 (16)0.039 (2)0.0232 (17)0.0016 (14)0.0031 (13)0.0074 (15)
C90.0227 (17)0.0278 (18)0.0294 (18)0.0069 (14)0.0037 (14)0.0022 (14)
C100.0260 (18)0.0237 (16)0.0247 (17)0.0007 (14)0.0024 (13)0.0025 (14)
C110.0162 (15)0.0232 (16)0.0187 (15)0.0003 (11)0.0008 (11)0.0018 (12)
C120.0237 (17)0.0238 (17)0.0255 (18)0.0004 (13)0.0028 (13)0.0033 (13)
C130.0210 (16)0.033 (2)0.0252 (16)0.0056 (15)0.0003 (12)0.0026 (15)
C140.0188 (16)0.0252 (16)0.0162 (14)0.0013 (12)0.0023 (12)0.0001 (12)
Geometric parameters (Å, º) top
Na1—O1i2.342 (3)O5—C81.391 (5)
Na1—O2ii2.434 (3)C1—C21.511 (5)
Na1—O4iii2.494 (3)C2—C71.382 (5)
Na1—O22.517 (3)C2—C31.394 (5)
Na1—O3iii2.789 (3)C3—C41.399 (5)
Na2—O3iv2.285 (3)C3—H30.9300
Na2—O4iii2.326 (3)C4—C51.388 (5)
Na2—O22.435 (3)C4—H40.9300
Na2—O4v2.453 (3)C5—C61.389 (6)
O1—C11.252 (5)C6—C71.404 (5)
O1—Na1vi2.342 (3)C6—H60.9300
O1—Na3vi2.784 (4)C7—H70.9300
O2—C11.268 (4)C8—C91.382 (6)
O2—Na1vii2.434 (3)C8—C131.384 (6)
O3—C141.260 (5)C9—C101.389 (5)
O3—Na2viii2.285 (3)C9—H90.9300
O3—Na3ix2.774 (4)C10—C111.394 (5)
O3—Na1x2.789 (3)C10—H100.9300
O4—C141.266 (5)C11—C121.393 (5)
O4—Na2x2.326 (3)C11—C141.509 (5)
O4—Na2xi2.453 (3)C12—C131.401 (5)
O4—Na1x2.494 (3)C12—H120.9300
O5—C51.381 (4)C13—H130.9300
O1i—Na1—O2ii128.52 (12)O2—C1—C2117.6 (3)
O1i—Na1—O4iii96.84 (11)C7—C2—C3119.4 (3)
O2ii—Na1—O4iii123.07 (11)C7—C2—C1121.1 (3)
O1i—Na1—O284.62 (11)C3—C2—C1119.5 (3)
O2ii—Na1—O2124.75 (10)C2—C3—C4120.5 (3)
O4iii—Na1—O286.69 (10)C2—C3—H3119.7
O1i—Na1—O3iii144.60 (11)C4—C3—H3119.7
O2ii—Na1—O3iii76.17 (10)C5—C4—C3119.1 (3)
O4iii—Na1—O3iii49.58 (9)C5—C4—H4120.4
O2—Na1—O3iii101.66 (10)C3—C4—H4120.4
O3iv—Na2—O4iii101.63 (12)O5—C5—C4115.2 (3)
O3iv—Na2—O286.45 (11)O5—C5—C6123.4 (3)
O4iii—Na2—O292.48 (11)C4—C5—C6121.3 (3)
O3iv—Na2—O4v101.41 (12)C5—C6—C7118.6 (3)
O4iii—Na2—O4v135.10 (11)C5—C6—H6120.7
O2—Na2—O4v126.93 (11)C7—C6—H6120.7
O2—Na2—Na3vi72.45 (9)C2—C7—C6121.0 (3)
C1—O1—Na1vi140.4 (3)C2—C7—H7119.5
C1—O1—Na3vi102.7 (2)C6—C7—H7119.5
Na1vi—O1—Na3vi92.50 (11)C9—C8—C13121.6 (3)
C1—O2—Na1vii115.6 (2)C9—C8—O5118.7 (4)
C1—O2—Na2106.9 (2)C13—C8—O5119.4 (4)
Na1vii—O2—Na2101.34 (11)C8—C9—C10119.6 (3)
C1—O2—Na1120.0 (2)C8—C9—H9120.2
Na1vii—O2—Na1117.45 (12)C10—C9—H9120.2
Na2—O2—Na188.21 (10)C9—C10—C11120.2 (4)
C14—O3—Na2viii154.6 (3)C9—C10—H10119.9
C14—O3—Na3ix128.3 (2)C11—C10—H10119.9
Na2viii—O3—Na3ix73.42 (10)C12—C11—C10119.4 (3)
C14—O3—Na1x83.5 (2)C12—C11—C14120.1 (3)
Na2viii—O3—Na1x95.35 (10)C10—C11—C14120.4 (3)
Na3ix—O3—Na1x68.61 (9)C11—C12—C13120.6 (3)
C14—O4—Na2x129.7 (2)C11—C12—H12119.7
C14—O4—Na2xi115.0 (2)C13—C12—H12119.7
Na2x—O4—Na2xi115.15 (12)C8—C13—C12118.6 (4)
C14—O4—Na1x96.8 (2)C8—C13—H13120.7
Na2x—O4—Na1x91.23 (10)C12—C13—H13120.7
Na2xi—O4—Na1x84.93 (10)O3—C14—O4124.1 (3)
C5—O5—C8120.4 (3)O3—C14—C11118.2 (3)
O1—C1—O2123.7 (3)O4—C14—C11117.7 (3)
O1—C1—C2118.7 (3)
O3iv—Na2—O2—C1128.5 (2)C3—C4—C5—O5174.1 (4)
O4iii—Na2—O2—C1130.0 (2)C3—C4—C5—C61.9 (6)
O4v—Na2—O2—C126.9 (3)O5—C5—C6—C7173.5 (3)
O3iv—Na2—O2—Na1vii7.05 (12)C4—C5—C6—C72.2 (6)
O4iii—Na2—O2—Na1vii108.56 (12)C3—C2—C7—C60.7 (6)
O4v—Na2—O2—Na1vii94.58 (14)C1—C2—C7—C6178.9 (3)
O3iv—Na2—O2—Na1110.60 (11)C5—C6—C7—C20.9 (6)
O4iii—Na2—O2—Na19.09 (11)C5—O5—C8—C990.4 (5)
O4v—Na2—O2—Na1147.78 (12)C5—O5—C8—C1396.2 (5)
O1i—Na1—O2—C119.8 (3)C13—C8—C9—C101.9 (6)
O2ii—Na1—O2—C1114.3 (2)O5—C8—C9—C10171.3 (3)
O4iii—Na1—O2—C1117.0 (3)C8—C9—C10—C111.3 (6)
O3iii—Na1—O2—C1164.5 (3)C9—C10—C11—C120.7 (5)
C14iii—Na1—O2—C1138.8 (3)C9—C10—C11—C14179.5 (3)
O1i—Na1—O2—Na1vii169.42 (13)C10—C11—C12—C132.2 (5)
O2ii—Na1—O2—Na1vii35.3 (2)C14—C11—C12—C13178.0 (3)
O4iii—Na1—O2—Na1vii93.37 (13)C9—C8—C13—C120.5 (6)
O3iii—Na1—O2—Na1vii45.83 (14)O5—C8—C13—C12172.7 (3)
C14iii—Na1—O2—Na1vii71.53 (14)C11—C12—C13—C81.6 (6)
O1i—Na1—O2—Na288.72 (11)Na2viii—O3—C14—O4113.0 (6)
O2ii—Na1—O2—Na2137.17 (13)Na3ix—O3—C14—O431.9 (5)
O4iii—Na1—O2—Na28.48 (10)Na1x—O3—C14—O424.2 (3)
O3iii—Na1—O2—Na256.02 (11)Na2viii—O3—C14—C1166.2 (7)
Na1vi—O1—C1—O269.3 (5)Na3ix—O3—C14—C11148.8 (3)
Na3vi—O1—C1—O240.8 (4)Na1x—O3—C14—C11155.1 (3)
Na1vi—O1—C1—C2111.7 (4)Na2viii—O3—C14—Na1x88.8 (6)
Na3vi—O1—C1—C2138.3 (3)Na3ix—O3—C14—Na1x56.1 (2)
Na1vii—O2—C1—O188.5 (4)Na2x—O4—C14—O370.0 (5)
Na2—O2—C1—O123.4 (4)Na2xi—O4—C14—O3114.9 (4)
Na1—O2—C1—O1121.4 (3)Na1x—O4—C14—O327.3 (4)
Na1vii—O2—C1—C290.6 (3)Na2x—O4—C14—C11110.7 (3)
Na2—O2—C1—C2157.5 (2)Na2xi—O4—C14—C1164.4 (3)
Na1—O2—C1—C259.6 (4)Na1x—O4—C14—C11152.0 (3)
O1—C1—C2—C78.4 (5)Na2x—O4—C14—Na1x97.3 (3)
O2—C1—C2—C7172.5 (3)Na2xi—O4—C14—Na1x87.57 (17)
O1—C1—C2—C3172.0 (4)C12—C11—C14—O311.6 (5)
O2—C1—C2—C37.1 (5)C10—C11—C14—O3168.2 (3)
C7—C2—C3—C41.0 (5)C12—C11—C14—O4167.7 (3)
C1—C2—C3—C4178.6 (3)C10—C11—C14—O412.5 (5)
C2—C3—C4—C50.3 (6)C12—C11—C14—Na1x95.3 (6)
C8—O5—C5—C4146.1 (4)C10—C11—C14—Na1x84.9 (6)
C8—O5—C5—C637.9 (6)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z; (v) x1/2, y+1/2, z; (vi) x, y+1, z+1/2; (vii) x, y, z+1/2; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+3/2, z+1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula2Na+·C14H8O52
Mr302.18
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)29.1091 (4), 5.7801 (1), 7.6429 (1)
β (°) 92.4420 (1)
V3)1284.78 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.5 × 0.4 × 0.2
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.888, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5002, 1471, 1464
Rint0.015
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.135, 1.27
No. of reflections1471
No. of parameters203
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

 

Acknowledgements

We thank Beijing Normal University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDey, A. & Desiraju, G. R. (2005). Chem. Commun. pp. 2486–2488.  Web of Science CSD CrossRef Google Scholar
First citationPotts, S., Bredenkamp, M. W. & Gertenbach, J.-A. (2007). Acta Cryst. E63, o2887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds