metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­aqua­zinc(II)]-μ-1H-1,2,4-triazole-3,5-di­carboxyl­ato]

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 22 July 2008; accepted 29 July 2008; online 6 August 2008)

In the title compound, [Zn(C4HN3O4)(H2O)3]n, each ZnII atom adopts a distorted octa­hedral coordination geometry, being surrounded by one chelating and one monodentate 1H-1,2,4-triazole-3,5-dicarboxyl­ate ligand and three water mol­ecules. Adjacent ZnII cations are linked by a 1H-1,2,4-triazole-3,5-dicarboxyl­ate ligand in a μ2,κ3 fashion to form a chain running along the c axis. The crystal packing is stabilized by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Yang et al. (2004[Yang, J.-H., Zheng, S.-L., Yu, X.-L. & Chen, X.-M. (2004). Cryst. Growth Des. 4, 831-836.]); Yin et al. (2001[Yin, P., Zheng, L.-M., Gao, S. & Xin, X.-Q. (2001). Chem. Commun. pp. 2346-2347.]); Tian et al. (2003[Tian, J.-L., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Cheng, P. (2003). Inorg. Chem. Commun. 6, 1025-1029.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4HN3O4)(H2O)3]

  • Mr = 274.50

  • Monoclinic, P 21 /c

  • a = 10.7388 (11) Å

  • b = 6.6608 (7) Å

  • c = 13.7789 (10) Å

  • β = 120.384 (6)°

  • V = 850.22 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 293 (2) K

  • 0.13 × 0.12 × 0.12 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.703, Tmax = 0.721

  • 4297 measured reflections

  • 1652 independent reflections

  • 1501 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.06

  • 1652 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.81 1.95 2.723 (3) 161
O1W—H1WA⋯O2ii 0.85 1.85 2.697 (3) 176
O1W—H1WB⋯O3Wiii 0.85 2.16 2.946 (3) 154
O2W—H2WA⋯N1iv 0.85 2.08 2.925 (4) 172
O2W—H2WB⋯O3v 0.85 2.01 2.848 (3) 170
O3W—H3WA⋯O3 0.85 1.86 2.708 (3) 174
O3W—H3WB⋯O4v 0.85 1.91 2.753 (3) 174
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x-1, y+{\script{1\over 2}}, -z-{\script{3\over 2}}]; (iii) -x, -y, -z-1; (iv) -x-1, -y-1, -z-1; (v) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Synthesis and characterization of coordination polymers is of great interest due to the formation of fascinating structures with interesting applications (Yin et al. 2001; Yang et al. 2004). Among these coordination polymers, one-dimensional chain complexes as important precursors of molecular magnets have attracted wide interest of experimental and theoretical chemists (Tian et al. 2003). Herein, we report a new one-dimensional compound [Zn(Htda)(H2O)3)]n (H3tda = 1H-1,2,4-triazole-3,5-dicarboxylic acid).

The asymmetric unit of the title compound, [Zn(Htda)(H2O)3)]n (H3tda = 1H-1,2,4-triazole-3,5-dicarboxylic acid), contains a ZnII cation, a Htda anion and three coordinated water molecules. In the compound, the ZnII ion displays a slightly distorted octahedral geometry, being surrounded by one chelating and one monodentate Htda ligands, and three H2O molecules. Meanwhile, the adjacent ZnII cations are linked by a µ3-Htda ligand to form a one-dimensional chain. The shortest intrachain Zn···Zn distance is 6.936 (4) Å. The chains are further stabilized by N—H···O and O—H···O hydrogen bonds.

Related literature top

For related literature, see: Yang et al. (2004); Yin et al. (2001); Tian et al. (2003).

Experimental top

A mixture of H3tda (0.0157 g, 0.1 mmol), Zn(NO3)2.6H2O (0.0297 g, 0.1 mmol), and water (10 ml) was stirred for 1 h at room temperature, and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After 3 weeks, colorless block crystals were obtained in 30% yield (0.0082 g) based on ZnII.

Refinement top

H atoms were located in a difference map but refined as riding with N—H = 0.80 Å and O—H = 0.85 Å and with Uiso(H) = 1.2Uiso(N,O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Local coordination environment of the title compound with 30% thermal ellipsoids. Symmetry code: a: x, -1/2 - y, -1/2 + z.
[Figure 2] Fig. 2. The one-dimensional chain of the title compound.
catena-Poly[[triaquazinc(II)]-µ-1H-1,2,4-triazole- 3,5-dicarboxylato] top
Crystal data top
[Zn(C4HN3O4)(H2O)3]F(000) = 552
Mr = 274.50Dx = 2.144 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 805 reflections
a = 10.7388 (11) Åθ = 2.5–28.0°
b = 6.6608 (7) ŵ = 2.92 mm1
c = 13.7789 (10) ÅT = 293 K
β = 120.384 (6)°Block, colourless
V = 850.22 (14) Å30.13 × 0.12 × 0.12 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
1652 independent reflections
Radiation source: fine-focus sealed tube1501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1213
Tmin = 0.703, Tmax = 0.721k = 87
4297 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0485P)2 + 1.155P]
where P = (Fo2 + 2Fc2)/3
1652 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Zn(C4HN3O4)(H2O)3]V = 850.22 (14) Å3
Mr = 274.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7388 (11) ŵ = 2.92 mm1
b = 6.6608 (7) ÅT = 293 K
c = 13.7789 (10) Å0.13 × 0.12 × 0.12 mm
β = 120.384 (6)°
Data collection top
Bruker APEX CCD
diffractometer
1652 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1501 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.721Rint = 0.026
4297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
1652 reflectionsΔρmin = 0.31 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.21910 (4)0.31001 (6)0.54678 (3)0.01968 (16)
C10.5300 (4)0.3318 (5)0.6300 (2)0.0150 (6)
C20.4615 (3)0.2580 (5)0.5104 (2)0.0138 (6)
C30.2985 (3)0.1691 (5)0.3493 (3)0.0158 (6)
C40.1588 (4)0.1138 (5)0.2453 (3)0.0188 (7)
N10.5320 (3)0.2264 (4)0.4566 (2)0.0164 (6)
N20.4261 (3)0.1687 (4)0.3544 (2)0.0166 (6)
H2A0.44710.14520.30710.020*
N30.3183 (3)0.2244 (4)0.4487 (2)0.0155 (5)
O10.4393 (2)0.3607 (4)0.66272 (18)0.0200 (5)
O20.6604 (3)0.3595 (4)0.68401 (19)0.0258 (6)
O30.0468 (3)0.1174 (5)0.2503 (2)0.0327 (6)
O40.1676 (2)0.0634 (4)0.16134 (18)0.0227 (5)
O1W0.2327 (3)0.0209 (4)0.60933 (19)0.0305 (6)
H1WA0.26260.03380.67310.037*
H1WB0.15560.04840.57760.037*
O2W0.1842 (2)0.6059 (4)0.47695 (19)0.0231 (5)
H2WA0.26300.65850.48920.028*
H2WB0.12270.61510.40720.028*
O3W0.0099 (2)0.2331 (4)0.42261 (18)0.0199 (5)
H3WA0.01690.19000.36750.024*
H3WB0.04970.33010.39750.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0174 (2)0.0265 (2)0.0153 (2)0.00014 (16)0.00829 (18)0.00025 (15)
C10.0181 (16)0.0154 (15)0.0108 (15)0.0001 (12)0.0069 (13)0.0002 (12)
C20.0149 (16)0.0154 (14)0.0108 (14)0.0004 (12)0.0062 (13)0.0004 (12)
C30.0148 (16)0.0180 (15)0.0142 (15)0.0001 (12)0.0070 (13)0.0000 (12)
C40.0200 (17)0.0205 (16)0.0114 (15)0.0017 (14)0.0047 (14)0.0023 (12)
N10.0147 (14)0.0214 (14)0.0127 (13)0.0021 (11)0.0066 (11)0.0020 (10)
N20.0192 (14)0.0234 (14)0.0097 (13)0.0000 (11)0.0090 (12)0.0015 (10)
N30.0149 (14)0.0185 (13)0.0117 (13)0.0020 (11)0.0058 (11)0.0016 (10)
O10.0192 (12)0.0314 (13)0.0105 (11)0.0023 (10)0.0083 (10)0.0029 (9)
O20.0139 (12)0.0414 (15)0.0172 (12)0.0040 (11)0.0042 (10)0.0087 (11)
O30.0151 (13)0.0615 (18)0.0201 (13)0.0055 (12)0.0079 (11)0.0142 (12)
O40.0230 (13)0.0337 (13)0.0122 (11)0.0086 (11)0.0095 (10)0.0049 (10)
O1W0.0323 (15)0.0272 (13)0.0200 (12)0.0081 (11)0.0045 (11)0.0055 (10)
O2W0.0187 (12)0.0288 (13)0.0187 (12)0.0025 (10)0.0072 (10)0.0037 (10)
O3W0.0187 (12)0.0252 (12)0.0170 (11)0.0015 (10)0.0098 (10)0.0006 (10)
Geometric parameters (Å, º) top
Zn1—O1W2.085 (2)C3—C41.505 (5)
Zn1—O3W2.085 (2)C4—O31.241 (4)
Zn1—O4i2.096 (2)C4—O41.252 (4)
Zn1—O12.106 (2)N1—N21.342 (4)
Zn1—O2W2.141 (2)N2—H2A0.8053
Zn1—N32.177 (3)O4—Zn1ii2.096 (2)
C1—O21.223 (4)O1W—H1WA0.8499
C1—O11.278 (4)O1W—H1WB0.8500
C1—C21.508 (4)O2W—H2WA0.8500
C2—N11.316 (4)O2W—H2WB0.8500
C2—N31.348 (4)O3W—H3WA0.8500
C3—N31.328 (4)O3W—H3WB0.8500
C3—N21.336 (4)
O1W—Zn1—O3W86.17 (10)N2—C3—C4123.4 (3)
O1W—Zn1—O4i92.88 (10)O3—C4—O4125.8 (3)
O3W—Zn1—O4i97.55 (9)O3—C4—C3118.0 (3)
O1W—Zn1—O191.02 (10)O4—C4—C3116.2 (3)
O3W—Zn1—O1172.75 (9)C2—N1—N2102.3 (3)
O4i—Zn1—O189.25 (9)C3—N2—N1110.9 (3)
O1W—Zn1—O2W174.71 (10)C3—N2—H2A131.1
O3W—Zn1—O2W89.22 (9)N1—N2—H2A118.0
O4i—Zn1—O2W85.14 (9)C3—N3—C2103.4 (3)
O1—Zn1—O2W93.86 (9)C3—N3—Zn1147.1 (2)
O1W—Zn1—N393.49 (10)C2—N3—Zn1109.04 (19)
O3W—Zn1—N395.09 (9)C1—O1—Zn1118.15 (19)
O4i—Zn1—N3166.20 (10)C4—O4—Zn1ii139.4 (2)
O1—Zn1—N378.40 (9)Zn1—O1W—H1WA137.2
O2W—Zn1—N389.51 (9)Zn1—O1W—H1WB116.3
O2—C1—O1127.2 (3)H1WA—O1W—H1WB93.4
O2—C1—C2119.3 (3)Zn1—O2W—H2WA111.1
O1—C1—C2113.4 (3)Zn1—O2W—H2WB115.7
N1—C2—N3114.6 (3)H2WA—O2W—H2WB108.8
N1—C2—C1124.5 (3)Zn1—O3W—H3WA105.7
N3—C2—C1120.9 (3)Zn1—O3W—H3WB115.1
N3—C3—N2108.8 (3)H3WA—O3W—H3WB106.3
N3—C3—C4127.8 (3)
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.811.952.723 (3)161
O1W—H1WA···O2iii0.851.852.697 (3)176
O1W—H1WB···O3Wiv0.852.162.946 (3)154
O2W—H2WA···N1v0.852.082.925 (4)172
O2W—H2WB···O3vi0.852.012.848 (3)170
O3W—H3WA···O30.851.862.708 (3)174
O3W—H3WB···O4vi0.851.912.753 (3)174
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x1, y+1/2, z3/2; (iv) x, y, z1; (v) x1, y1, z1; (vi) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C4HN3O4)(H2O)3]
Mr274.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.7388 (11), 6.6608 (7), 13.7789 (10)
β (°) 120.384 (6)
V3)850.22 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.13 × 0.12 × 0.12
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.703, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
4297, 1652, 1501
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.06
No. of reflections1652
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.31

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.811.952.723 (3)160.9
O1W—H1WA···O2ii0.851.852.697 (3)175.8
O1W—H1WB···O3Wiii0.852.162.946 (3)153.6
O2W—H2WA···N1iv0.852.082.925 (4)171.7
O2W—H2WB···O3v0.852.012.848 (3)170.1
O3W—H3WA···O30.851.862.708 (3)173.9
O3W—H3WB···O4v0.851.912.753 (3)173.5
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y+1/2, z3/2; (iii) x, y, z1; (iv) x1, y1, z1; (v) x, y1/2, z1/2.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, J.-L., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Cheng, P. (2003). Inorg. Chem. Commun. 6, 1025–1029.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, J.-H., Zheng, S.-L., Yu, X.-L. & Chen, X.-M. (2004). Cryst. Growth Des. 4, 831–836.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, P., Zheng, L.-M., Gao, S. & Xin, X.-Q. (2001). Chem. Commun. pp. 2346–2347.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds