metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[zinc(II)-[μ-1,4-bis­­(imidazol-1-yl­methyl)benzene]-μ-4,4′-oxydibenzoato]

aDepartment of Chemistry, College of Chemistry and Biology, Beihua University, Jilin City 132013, People's Republic of China
*Correspondence e-mail: jlschy@126.com

(Received 23 July 2008; accepted 29 July 2008; online 6 August 2008)

In the title compound, [Zn(C14H8O5)(C14H14N4)]n, the coordination polyhedron around each ZnII atom is a distorted tetra­hedron. The ligands bridge the Zn atoms to form a two-dimensional (4,4)-network.

Related literature

For related literature, see Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Ma et al. (2003[Ma, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H8O5)(C14H14N4)]

  • Mr = 559.87

  • Monoclinic, P 21 /c

  • a = 6.1608 (9) Å

  • b = 25.811 (4) Å

  • c = 16.185 (3) Å

  • β = 92.503 (2)°

  • V = 2571.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 (2) K

  • 0.33 × 0.25 × 0.19 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.718, Tmax = 0.826

  • 14194 measured reflections

  • 5057 independent reflections

  • 3906 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.159

  • S = 1.07

  • 5057 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal–organic frameworks is currently of great interest because of their interesting structures and potential applications. As a good candidate for rigid rod-like spacers in the construction of metal–organic polymers, 4,4'-bipyridine has been relatively well known and has shown hundreds of interesting supramolecular architectures (Batten & Robson, 1998). However, the flexible ligands such as 1,4-bis(imidazol-1-ylmethyl)benzene (L) has not been well explored to date (Ma et al., 2003). In this work, I selected 4,4'-oxybis(benzoic acid) (H2oba) and L as linkers, generating a new coordination polymer, [Zn(oba)(L)], (I), which is reported here.

In compound (I) each ZnII atom is four-coordinated by two N atoms from one L ligand, and two O atoms from two oba carboxylate anions in a distorted tetrahedral coordination sphere (Fig. 1). The two neighbouring ZnII atoms are bridged by the oba and L ligands to form a two-dimensional (4,4) network (Fig. 2).

Related literature top

For related literature, see Batten & Robson (1998); Ma et al. (2003).

Experimental top

A mixture of H2oba (0.5 mmol), L (0.5 mmol), NaOH (1 mmol) and ZnCl2.6H2O (0.5 mmol) was suspended in 12 ml of deionized water and sealed in a 20 ml Teflon-lined autoclave. Upon heating at 170°C for one week, the autoclave was slowly cooled to room temperature. The crystals were collected, washed with deionized water and dried.

Refinement top

H atoms were generated geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) -1 - x, 1/2 + y, 1/2 - z; (ii) x, 1/2 - y, 1/2 + z.
[Figure 2] Fig. 2. View of the chain structure of (I).
Poly[zinc(II)-[µ-1,4-bis(imidazol-1-ylmethyl)benzene]-µ-4,4'-oxydibenzoato] top
Crystal data top
[Zn(C14H8O5)(C14H14N4)]F(000) = 1152
Mr = 559.87Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5057 reflections
a = 6.1608 (9) Åθ = 1.9–26.1°
b = 25.811 (4) ŵ = 1.00 mm1
c = 16.185 (3) ÅT = 293 K
β = 92.503 (2)°Block, colourless
V = 2571.2 (7) Å30.33 × 0.25 × 0.19 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
5057 independent reflections
Radiation source: fine-focus sealed tube3906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 26.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 76
Tmin = 0.718, Tmax = 0.826k = 3127
14194 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0761P)2 + 2.2361P]
where P = (Fo2 + 2Fc2)/3
5057 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Zn(C14H8O5)(C14H14N4)]V = 2571.2 (7) Å3
Mr = 559.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1608 (9) ŵ = 1.00 mm1
b = 25.811 (4) ÅT = 293 K
c = 16.185 (3) Å0.33 × 0.25 × 0.19 mm
β = 92.503 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5057 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3906 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.826Rint = 0.047
14194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.07Δρmax = 1.43 e Å3
5057 reflectionsΔρmin = 0.31 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1661 (7)0.04984 (15)0.0495 (3)0.0273 (9)
H10.05250.02750.06030.033*
C20.3029 (7)0.04487 (16)0.0136 (3)0.0284 (9)
H20.30040.01900.05370.034*
C30.3919 (7)0.11368 (15)0.0599 (3)0.0281 (9)
H30.46430.14340.07840.034*
C40.6352 (8)0.09401 (17)0.0563 (3)0.0384 (11)
H4A0.61210.07640.10890.046*
H4B0.76230.07890.02830.046*
C50.6768 (7)0.15040 (16)0.0719 (3)0.0312 (10)
C60.5194 (8)0.18139 (19)0.1091 (3)0.0416 (12)
H60.38610.16680.12510.050*
C70.5531 (8)0.23363 (19)0.1233 (3)0.0440 (12)
H70.44250.25370.14760.053*
C80.7516 (7)0.25584 (16)0.1014 (3)0.0274 (9)
C90.9128 (7)0.22467 (18)0.0648 (3)0.0355 (11)
H91.04790.23880.05020.043*
C100.8738 (8)0.17265 (18)0.0500 (3)0.0379 (11)
H100.98280.15240.02490.045*
C110.8036 (7)0.31222 (17)0.1168 (3)0.0333 (10)
H11A0.87590.32660.06750.040*
H11B0.90320.31450.16140.040*
C120.4828 (8)0.36811 (18)0.0836 (3)0.0393 (12)
H120.50950.37200.02690.047*
C130.3094 (8)0.38615 (17)0.1294 (3)0.0349 (11)
H130.19680.40570.10910.042*
C140.5102 (7)0.34527 (16)0.2128 (3)0.0272 (9)
H140.56390.33060.26030.033*
C150.2311 (7)0.04825 (15)0.2220 (3)0.0269 (9)
C160.3735 (7)0.01450 (15)0.2723 (3)0.0272 (9)
C170.5687 (7)0.00464 (16)0.2373 (3)0.0312 (10)
H170.60760.00320.18260.037*
C180.7053 (7)0.03508 (17)0.2825 (3)0.0332 (10)
H180.83530.04750.25870.040*
C190.6446 (7)0.04668 (15)0.3635 (3)0.0301 (10)
C200.4550 (8)0.02835 (16)0.4000 (3)0.0322 (10)
H200.41740.03660.45470.039*
C210.3190 (7)0.00262 (16)0.3547 (3)0.0305 (10)
H210.19100.01550.37950.037*
C220.8501 (7)0.12400 (15)0.3885 (3)0.0291 (9)
C230.7128 (7)0.15793 (17)0.3502 (3)0.0370 (11)
H230.57680.14710.33440.044*
C240.7814 (7)0.20848 (16)0.3356 (3)0.0350 (11)
H240.68880.23180.31110.042*
C250.9857 (7)0.22472 (15)0.3571 (3)0.0268 (9)
C261.0669 (7)0.27912 (16)0.3427 (3)0.0294 (10)
C271.1208 (7)0.18936 (16)0.3946 (3)0.0333 (10)
H271.25870.19970.40900.040*
C281.0534 (7)0.13930 (17)0.4106 (3)0.0340 (10)
H281.14460.11610.43600.041*
N10.2223 (6)0.09330 (12)0.0948 (2)0.0258 (8)
N20.4459 (6)0.08575 (13)0.0061 (2)0.0270 (8)
N30.6107 (6)0.34292 (13)0.1381 (2)0.0281 (8)
N40.3250 (6)0.37110 (13)0.2109 (2)0.0282 (8)
O10.0854 (5)0.07421 (11)0.26198 (18)0.0326 (7)
O20.2634 (5)0.05027 (12)0.14567 (18)0.0353 (7)
O31.2588 (5)0.28926 (12)0.3550 (2)0.0393 (8)
O40.9314 (5)0.31274 (11)0.31674 (19)0.0331 (7)
O50.7843 (5)0.07438 (11)0.41306 (19)0.0380 (8)
Zn10.09373 (8)0.120902 (17)0.19746 (3)0.02586 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (2)0.022 (2)0.032 (2)0.0029 (17)0.0013 (18)0.0012 (17)
C20.030 (2)0.026 (2)0.029 (2)0.0022 (18)0.0012 (18)0.0039 (17)
C30.032 (2)0.020 (2)0.032 (2)0.0034 (17)0.0039 (19)0.0014 (17)
C40.039 (3)0.028 (2)0.049 (3)0.004 (2)0.023 (2)0.004 (2)
C50.036 (3)0.029 (2)0.030 (2)0.0011 (19)0.011 (2)0.0031 (18)
C60.030 (3)0.042 (3)0.052 (3)0.008 (2)0.004 (2)0.011 (2)
C70.032 (3)0.040 (3)0.059 (3)0.003 (2)0.005 (2)0.021 (2)
C80.026 (2)0.031 (2)0.026 (2)0.0028 (18)0.0033 (17)0.0044 (17)
C90.025 (2)0.038 (3)0.044 (3)0.001 (2)0.003 (2)0.001 (2)
C100.032 (3)0.035 (3)0.047 (3)0.008 (2)0.001 (2)0.008 (2)
C110.024 (2)0.037 (3)0.038 (3)0.0009 (19)0.0014 (19)0.005 (2)
C120.052 (3)0.035 (3)0.031 (2)0.001 (2)0.003 (2)0.003 (2)
C130.040 (3)0.029 (2)0.036 (3)0.003 (2)0.010 (2)0.0047 (19)
C140.026 (2)0.029 (2)0.027 (2)0.0018 (18)0.0003 (18)0.0035 (17)
C150.027 (2)0.017 (2)0.037 (3)0.0043 (17)0.0066 (19)0.0005 (17)
C160.032 (2)0.018 (2)0.033 (2)0.0043 (17)0.0065 (19)0.0012 (17)
C170.040 (3)0.026 (2)0.028 (2)0.0034 (19)0.000 (2)0.0000 (18)
C180.030 (3)0.032 (2)0.037 (3)0.009 (2)0.001 (2)0.0031 (19)
C190.040 (3)0.016 (2)0.034 (2)0.0043 (18)0.009 (2)0.0005 (17)
C200.048 (3)0.024 (2)0.025 (2)0.001 (2)0.003 (2)0.0018 (17)
C210.032 (2)0.025 (2)0.033 (2)0.0044 (18)0.0035 (19)0.0005 (18)
C220.041 (3)0.021 (2)0.026 (2)0.0033 (19)0.0050 (19)0.0005 (17)
C230.031 (3)0.033 (2)0.048 (3)0.011 (2)0.013 (2)0.000 (2)
C240.035 (3)0.024 (2)0.047 (3)0.0005 (19)0.019 (2)0.0029 (19)
C250.028 (2)0.022 (2)0.031 (2)0.0032 (17)0.0027 (18)0.0014 (17)
C260.035 (3)0.021 (2)0.032 (2)0.0009 (18)0.0055 (19)0.0008 (17)
C270.030 (2)0.027 (2)0.043 (3)0.0020 (19)0.009 (2)0.0003 (19)
C280.036 (3)0.025 (2)0.042 (3)0.0024 (19)0.013 (2)0.0013 (19)
N10.030 (2)0.0206 (17)0.0268 (18)0.0008 (15)0.0026 (15)0.0004 (14)
N20.029 (2)0.0230 (18)0.0299 (18)0.0035 (15)0.0051 (15)0.0005 (14)
N30.029 (2)0.0268 (19)0.0286 (19)0.0002 (15)0.0015 (16)0.0065 (15)
N40.030 (2)0.0240 (18)0.0303 (19)0.0032 (15)0.0033 (15)0.0039 (15)
O10.0351 (18)0.0278 (16)0.0354 (17)0.0094 (13)0.0073 (14)0.0003 (13)
O20.0397 (19)0.0369 (18)0.0300 (17)0.0037 (14)0.0068 (14)0.0024 (13)
O30.0345 (19)0.0294 (17)0.055 (2)0.0072 (14)0.0087 (16)0.0032 (15)
O40.0340 (18)0.0234 (15)0.0426 (18)0.0012 (13)0.0088 (14)0.0021 (13)
O50.053 (2)0.0251 (16)0.0375 (18)0.0140 (14)0.0200 (16)0.0062 (13)
Zn10.0284 (3)0.0203 (3)0.0292 (3)0.0010 (2)0.0048 (2)0.00183 (19)
Geometric parameters (Å, º) top
C1—C21.357 (6)C15—O21.243 (5)
C1—N11.376 (5)C15—O11.274 (5)
C1—H10.9300C15—C161.502 (6)
C2—N21.377 (5)C16—C211.395 (6)
C2—H20.9300C16—C171.397 (6)
C3—N11.319 (5)C17—C181.383 (6)
C3—N21.342 (5)C17—H170.9300
C3—H30.9300C18—C191.381 (6)
C4—N21.466 (5)C18—H180.9300
C4—C51.501 (6)C19—C201.370 (6)
C4—H4A0.9700C19—O51.398 (5)
C4—H4B0.9700C20—C211.389 (6)
C5—C61.375 (6)C20—H200.9300
C5—C101.375 (6)C21—H210.9300
C6—C71.385 (6)C22—C281.375 (6)
C6—H60.9300C22—C231.383 (6)
C7—C81.383 (6)C22—O51.396 (5)
C7—H70.9300C23—C241.389 (6)
C8—C91.390 (6)C23—H230.9300
C8—C111.513 (6)C24—C251.385 (6)
C9—C101.387 (6)C24—H240.9300
C9—H90.9300C25—C271.392 (6)
C10—H100.9300C25—C261.505 (6)
C11—N31.457 (5)C26—O31.236 (5)
C11—H11A0.9700C26—O41.288 (5)
C11—H11B0.9700C27—C281.378 (6)
C12—C131.356 (7)C27—H270.9300
C12—N31.372 (6)C28—H280.9300
C12—H120.9300N1—Zn12.002 (3)
C13—N41.383 (5)N4—Zn1i2.021 (4)
C13—H130.9300O1—Zn11.965 (3)
C14—N41.323 (5)O4—Zn1ii1.992 (3)
C14—N31.336 (5)Zn1—O4iii1.992 (3)
C14—H140.9300Zn1—N4iv2.021 (4)
C2—C1—N1109.1 (4)C16—C17—H17119.3
C2—C1—H1125.4C19—C18—C17118.6 (4)
N1—C1—H1125.4C19—C18—H18120.7
C1—C2—N2106.1 (4)C17—C18—H18120.7
C1—C2—H2126.9C20—C19—C18121.6 (4)
N2—C2—H2126.9C20—C19—O5117.7 (4)
N1—C3—N2110.8 (4)C18—C19—O5120.5 (4)
N1—C3—H3124.6C19—C20—C21119.6 (4)
N2—C3—H3124.6C19—C20—H20120.2
N2—C4—C5112.3 (3)C21—C20—H20120.2
N2—C4—H4A109.1C20—C21—C16120.3 (4)
C5—C4—H4A109.1C20—C21—H21119.8
N2—C4—H4B109.1C16—C21—H21119.8
C5—C4—H4B109.1C28—C22—C23121.1 (4)
H4A—C4—H4B107.9C28—C22—O5116.5 (4)
C6—C5—C10117.9 (4)C23—C22—O5122.2 (4)
C6—C5—C4121.0 (4)C22—C23—C24118.9 (4)
C10—C5—C4121.1 (4)C22—C23—H23120.5
C5—C6—C7122.1 (4)C24—C23—H23120.5
C5—C6—H6119.0C25—C24—C23121.0 (4)
C7—C6—H6119.0C25—C24—H24119.5
C8—C7—C6119.9 (4)C23—C24—H24119.5
C8—C7—H7120.1C24—C25—C27118.6 (4)
C6—C7—H7120.1C24—C25—C26122.9 (4)
C7—C8—C9118.5 (4)C27—C25—C26118.5 (4)
C7—C8—C11123.2 (4)O3—C26—O4123.3 (4)
C9—C8—C11118.3 (4)O3—C26—C25119.1 (4)
C10—C9—C8120.5 (4)O4—C26—C25117.6 (4)
C10—C9—H9119.7C28—C27—C25121.0 (4)
C8—C9—H9119.7C28—C27—H27119.5
C5—C10—C9121.2 (4)C25—C27—H27119.5
C5—C10—H10119.4C22—C28—C27119.4 (4)
C9—C10—H10119.4C22—C28—H28120.3
N3—C11—C8112.7 (4)C27—C28—H28120.3
N3—C11—H11A109.1C3—N1—C1106.4 (3)
C8—C11—H11A109.1C3—N1—Zn1124.3 (3)
N3—C11—H11B109.1C1—N1—Zn1129.2 (3)
C8—C11—H11B109.1C3—N2—C2107.5 (3)
H11A—C11—H11B107.8C3—N2—C4126.4 (4)
C13—C12—N3105.8 (4)C2—N2—C4125.8 (4)
C13—C12—H12127.1C14—N3—C12107.7 (4)
N3—C12—H12127.1C14—N3—C11125.4 (4)
C12—C13—N4109.9 (4)C12—N3—C11126.2 (4)
C12—C13—H13125.1C14—N4—C13105.0 (4)
N4—C13—H13125.1C14—N4—Zn1i128.0 (3)
N4—C14—N3111.6 (4)C13—N4—Zn1i126.5 (3)
N4—C14—H14124.2C15—O1—Zn1116.9 (3)
N3—C14—H14124.2C26—O4—Zn1ii106.7 (3)
O2—C15—O1124.1 (4)C22—O5—C19119.0 (3)
O2—C15—C16119.5 (4)O1—Zn1—O4iii107.32 (12)
O1—C15—C16116.4 (4)O1—Zn1—N1118.32 (13)
C21—C16—C17118.5 (4)O4iii—Zn1—N1115.16 (13)
C21—C16—C15121.6 (4)O1—Zn1—N4iv93.85 (13)
C17—C16—C15119.9 (4)O4iii—Zn1—N4iv109.34 (13)
C18—C17—C16121.3 (4)N1—Zn1—N4iv110.68 (14)
C18—C17—H17119.3
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y1/2, z+1/2; (iii) x1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C14H8O5)(C14H14N4)]
Mr559.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.1608 (9), 25.811 (4), 16.185 (3)
β (°) 92.503 (2)
V3)2571.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.33 × 0.25 × 0.19
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.718, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
14194, 5057, 3906
Rint0.047
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.159, 1.07
No. of reflections5057
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.31

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author thanks Beihua University for supporting this work.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds