organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,5-Dioxo­tetra­hydro­furan-3-yl)isoindoline-1,3-dione

aSchool of Life Sciences, Shandong University of Technology, Zibo 255049, People's Republic of China
*Correspondence e-mail: njuqss@yahoo.com.cn

(Received 25 July 2008; accepted 29 July 2008; online 6 August 2008)

In the title compound, C12H7NO5, the dihedral angle between the isoindole-1,3-dione plane and the least-squares plane of the furan ring is 89.2 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular C—H⋯O hydrogen bonds, forming centrosymmetric dimers.

Related literature

For related literature, see: Abdel & Atef (2004[Abdel, H. & Atef, A. M. (2004). Arch. Pharm. Res. 27, 495-501.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); King & Kidd (1951[King, F. E. & Kidd, D. A. A. (1951). J. Chem. Soc. pp. 2976-2978.]); Qian et al. (2006[Qian, S.-S., Cui, H.-Y. & Zhao, B.-S. (2006). Acta Cryst. E62, o2276-o2277.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7NO5

  • Mr = 245.19

  • Monoclinic, P 21 /n

  • a = 12.129 (2) Å

  • b = 5.1385 (10) Å

  • c = 16.818 (3) Å

  • β = 100.21 (3)°

  • V = 1031.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 (2) K

  • 0.30 × 0.30 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.994

  • 1963 measured reflections

  • 1870 independent reflections

  • 1492 reflections with I > 2σ(I)

  • Rint = 0.040

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.133

  • S = 1.07

  • 1870 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1 0.98 2.54 2.915 (3) 103 (4)
C12—H12B⋯O5i 0.97 2.58 3.476 (3) 153 (4)
Symmetry code: (i) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound has attracted attention for its anticonvulsant activity (Abdel & Atef, 2004). In addition, it was an intermediate for the synthesis of aspartic acid (King & Kidd, 1951). Here, we report its crystal structure.

The dihedral angle between the isoindole-1,3-dione plane and the plane of cyclopentane-1,3-dione is 90.0 (2)°. All the bond lengths are within normal ranges (Allen et al., 1987) and comparable to the values observed in other similar compounds (Qian et al., 2006). In the crystal structure, the molecules are linked through intermolecular C–H···O hydrogen bonds, forming centrosymmetric dimers.

Related literature top

For related literature, see: Abdel & Atef (2004); Allen et al. (1987); King & Kidd (1951); Qian et al. (2006).

Experimental top

The title compound was synthesized according to a literature method (Qian et al., 2006). L-aspartic acid (13.3 g, 0.1 mol) reacted with N-carboethoxy phthalimide (21.9 g, 0.1 mol) in 200 ml of water and 23.3 g (0.21 mol) of sodium carbonate. As a result, 21.3 g of the N-phthaloyl-L-aspartic acid was obtained (yield, 81%). 10.8 g of the title compound was obtained through heating of N-phthaloyl-L-aspartic acid (13.2 g, 0.05 mol) in 30 ml of acetic anhydride under reflux for 20 minutes. Subsequently, 0.1 g of the title compound was dissolved in acetic acid (20 ml). Single crystals suitable for X-ray diffraction were obtained by spontaneous evaporation of the solvent.

Refinement top

All H atoms were geometrically positioned and constrained to ride on their parent atoms with C—H distance in the range 0.93–0.98 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
2-(2,5-Dioxotetrahydrofuran-3-yl)isoindoline-1,3-dione top
Crystal data top
C12H7NO5F(000) = 504
Mr = 245.19Dx = 1.579 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.129 (2) Åθ = 10–13°
b = 5.1385 (10) ŵ = 0.13 mm1
c = 16.818 (3) ÅT = 293 K
β = 100.21 (3)°Prism, colorless
V = 1031.6 (4) Å30.30 × 0.30 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1492 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 014
Absorption correction: ψ scan
(SADABS; Sheldrick, 1996)
k = 06
Tmin = 0.963, Tmax = 0.994l = 2019
1963 measured reflections3 standard reflections every 200 reflections
1870 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.7913P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1870 reflectionsΔρmax = 0.31 e Å3
164 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.055 (5)
Crystal data top
C12H7NO5V = 1031.6 (4) Å3
Mr = 245.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.129 (2) ŵ = 0.13 mm1
b = 5.1385 (10) ÅT = 293 K
c = 16.818 (3) Å0.30 × 0.30 × 0.05 mm
β = 100.21 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1492 reflections with I > 2σ(I)
Absorption correction: ψ scan
(SADABS; Sheldrick, 1996)
Rint = 0.040
Tmin = 0.963, Tmax = 0.9943 standard reflections every 200 reflections
1963 measured reflections intensity decay: none
1870 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
1870 reflectionsΔρmin = 0.21 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.76293 (16)0.0485 (4)0.04496 (11)0.0347 (5)
O10.88949 (15)0.3867 (4)0.04821 (11)0.0466 (5)
C10.9239 (2)0.0386 (6)0.18134 (16)0.0487 (7)
H1A0.97100.00660.21830.058*
O20.65372 (15)0.3125 (3)0.00935 (10)0.0430 (5)
C20.8492 (2)0.2458 (6)0.19425 (15)0.0481 (7)
H2A0.84620.34740.24040.058*
C30.7791 (2)0.3047 (5)0.14002 (14)0.0409 (6)
H3A0.72920.44360.14850.049*
O30.44844 (18)0.1302 (5)0.13241 (15)0.0729 (7)
O40.81433 (16)0.2349 (4)0.20434 (11)0.0523 (6)
C40.78694 (19)0.1471 (5)0.07286 (13)0.0332 (6)
O50.62761 (15)0.2101 (3)0.18451 (10)0.0424 (5)
C50.85913 (19)0.0636 (5)0.06052 (13)0.0341 (6)
C60.9295 (2)0.1217 (5)0.11412 (15)0.0413 (6)
H6A0.97860.26210.10570.050*
C70.84523 (19)0.1944 (5)0.01570 (14)0.0339 (6)
C80.7244 (2)0.1603 (5)0.00526 (13)0.0338 (6)
C90.7191 (2)0.1091 (5)0.11716 (13)0.0339 (6)
H9A0.76040.25660.14490.041*
C100.7312 (2)0.1266 (5)0.17350 (14)0.0388 (6)
C110.5426 (2)0.0628 (6)0.13833 (15)0.0445 (7)
C120.5937 (2)0.1667 (5)0.10354 (15)0.0388 (6)
H12A0.56390.18470.04640.047*
H12B0.57910.32580.13090.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0446 (11)0.0297 (10)0.0303 (10)0.0057 (9)0.0077 (8)0.0006 (8)
O10.0528 (11)0.0376 (10)0.0481 (11)0.0136 (9)0.0056 (8)0.0040 (8)
C10.0487 (15)0.0611 (18)0.0394 (14)0.0068 (14)0.0165 (12)0.0077 (14)
O20.0536 (11)0.0369 (10)0.0398 (10)0.0133 (9)0.0117 (8)0.0027 (8)
C20.0594 (17)0.0513 (17)0.0336 (13)0.0100 (14)0.0082 (12)0.0012 (12)
C30.0535 (15)0.0341 (13)0.0339 (13)0.0014 (12)0.0045 (11)0.0007 (11)
O30.0529 (13)0.0827 (17)0.0840 (16)0.0099 (13)0.0147 (11)0.0248 (14)
O40.0595 (12)0.0508 (12)0.0444 (11)0.0101 (10)0.0036 (9)0.0093 (9)
C40.0392 (12)0.0296 (12)0.0302 (12)0.0021 (11)0.0046 (10)0.0041 (10)
O50.0583 (11)0.0337 (10)0.0353 (9)0.0070 (8)0.0090 (8)0.0050 (7)
C50.0388 (12)0.0292 (12)0.0328 (12)0.0040 (10)0.0023 (10)0.0057 (10)
C60.0406 (13)0.0396 (14)0.0432 (14)0.0004 (12)0.0061 (11)0.0071 (12)
C70.0367 (12)0.0276 (12)0.0351 (12)0.0009 (11)0.0001 (10)0.0051 (10)
C80.0411 (13)0.0285 (12)0.0309 (12)0.0018 (11)0.0036 (10)0.0012 (10)
C90.0468 (14)0.0266 (12)0.0287 (11)0.0047 (11)0.0073 (10)0.0014 (10)
C100.0555 (16)0.0324 (13)0.0277 (12)0.0030 (12)0.0048 (11)0.0021 (10)
C110.0523 (16)0.0446 (16)0.0386 (14)0.0034 (13)0.0135 (12)0.0014 (12)
C120.0505 (15)0.0286 (13)0.0386 (13)0.0008 (11)0.0110 (11)0.0002 (10)
Geometric parameters (Å, º) top
N—C81.394 (3)C4—C51.385 (3)
N—C71.405 (3)C4—C81.476 (3)
N—C91.443 (3)O5—C101.370 (3)
O1—C71.208 (3)O5—C111.398 (3)
C1—C61.391 (4)C5—C61.380 (3)
C1—C21.390 (4)C5—C71.483 (3)
C1—H1A0.9300C6—H6A0.9300
O2—C81.217 (3)C9—C121.526 (3)
C2—C31.387 (4)C9—C101.529 (3)
C2—H2A0.9300C9—H9A0.9800
C3—C41.379 (3)C11—C121.499 (4)
C3—H3A0.9300C12—H12A0.9700
O3—C111.180 (3)C12—H12B0.9700
O4—C101.188 (3)
C8—N—C7112.40 (19)O1—C7—C5130.7 (2)
C8—N—C9122.82 (19)N—C7—C5104.9 (2)
C7—N—C9124.76 (19)O2—C8—N123.0 (2)
C6—C1—C2121.1 (2)O2—C8—C4131.4 (2)
C6—C1—H1A119.4N—C8—C4105.6 (2)
C2—C1—H1A119.4N—C9—C12114.92 (19)
C3—C2—C1121.6 (2)N—C9—C10109.97 (19)
C3—C2—H2A119.2C12—C9—C10103.30 (19)
C1—C2—H2A119.2N—C9—H9A109.5
C4—C3—C2116.7 (2)C12—C9—H9A109.5
C4—C3—H3A121.7C10—C9—H9A109.5
C2—C3—H3A121.7O4—C10—O5121.5 (2)
C3—C4—C5122.1 (2)O4—C10—C9128.5 (2)
C3—C4—C8129.3 (2)O5—C10—C9110.0 (2)
C5—C4—C8108.6 (2)O3—C11—O5119.7 (3)
C10—O5—C11111.05 (19)O3—C11—C12131.2 (3)
C6—C5—C4121.3 (2)O5—C11—C12109.1 (2)
C6—C5—C7130.2 (2)C11—C12—C9105.0 (2)
C4—C5—C7108.5 (2)C11—C12—H12A110.7
C5—C6—C1117.2 (2)C9—C12—H12A110.7
C5—C6—H6A121.4C11—C12—H12B110.7
C1—C6—H6A121.4C9—C12—H12B110.7
O1—C7—N124.3 (2)H12A—C12—H12B108.8
C6—C1—C2—C31.4 (4)C9—N—C8—C4177.8 (2)
C1—C2—C3—C40.2 (4)C3—C4—C8—O21.9 (4)
C2—C3—C4—C51.5 (4)C5—C4—C8—O2179.3 (3)
C2—C3—C4—C8179.9 (2)C3—C4—C8—N178.5 (2)
C3—C4—C5—C61.9 (4)C5—C4—C8—N0.3 (3)
C8—C4—C5—C6179.2 (2)C8—N—C9—C1259.4 (3)
C3—C4—C5—C7178.7 (2)C7—N—C9—C12118.4 (2)
C8—C4—C5—C70.2 (3)C8—N—C9—C1056.6 (3)
C4—C5—C6—C10.7 (4)C7—N—C9—C10125.6 (2)
C7—C5—C6—C1179.9 (2)C11—O5—C10—O4176.2 (2)
C2—C1—C6—C51.0 (4)C11—O5—C10—C92.7 (3)
C8—N—C7—O1178.7 (2)N—C9—C10—O461.0 (3)
C9—N—C7—O10.7 (4)C12—C9—C10—O4175.9 (3)
C8—N—C7—C50.2 (3)N—C9—C10—O5117.8 (2)
C9—N—C7—C5177.9 (2)C12—C9—C10—O55.3 (2)
C6—C5—C7—O12.3 (4)C10—O5—C11—O3170.0 (3)
C4—C5—C7—O1178.4 (2)C10—O5—C11—C129.9 (3)
C6—C5—C7—N179.3 (2)O3—C11—C12—C9167.1 (3)
C4—C5—C7—N0.0 (2)O5—C11—C12—C912.7 (3)
C7—N—C8—O2179.4 (2)N—C9—C12—C11109.3 (2)
C9—N—C8—O22.6 (4)C10—C9—C12—C1110.5 (2)
C7—N—C8—C40.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.982.542.915 (3)103 (4)
C12—H12B···O5i0.972.583.476 (3)153 (4)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H7NO5
Mr245.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.129 (2), 5.1385 (10), 16.818 (3)
β (°) 100.21 (3)
V3)1031.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.30 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
1963, 1870, 1492
Rint0.040
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.133, 1.07
No. of reflections1870
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.982.542.915 (3)103 (4)
C12—H12B···O5i0.972.583.476 (3)153 (4)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This project was sponsored by the Doctoral Research Foundation (Shandong University of Technology, People's Republic of China).

References

First citationAbdel, H. & Atef, A. M. (2004). Arch. Pharm. Res. 27, 495–501.  Web of Science PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKing, F. E. & Kidd, D. A. A. (1951). J. Chem. Soc. pp. 2976–2978.  CrossRef Web of Science Google Scholar
First citationQian, S.-S., Cui, H.-Y. & Zhao, B.-S. (2006). Acta Cryst. E62, o2276–o2277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds