organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, and bDepartment of Chemistry, The New College (Autonomous), Chennai 600 014, India
*Correspondence e-mail: mnizam_new@yahoo.in

(Received 26 July 2008; accepted 8 August 2008; online 13 August 2008)

The title compound, C14H16N2O3, belongs to a group of esters of 2-oxo- and 1,2,3,4-tetra­hydro­pyrimidine-5-carboxylic acids, which exhibit a wide spectrum of biological activities. The dihydro­pyrimidine ring adopts a screw-boat conformation. The crystal packing is stabilized by strong N—H⋯O and weak C—H⋯O inter­molecular hydrogen bonds. An intra­molecular C—H⋯O hydrogen bond is also present.

Related literature

For related literature, see: Atwal et al. (1991[Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806-811.]); Broughton et al. (1975[Broughton, B. J., Chaplen, P., Knowles, P., Lunt, E., Marshall, S. M., Pain, D. L. & Wooldridge, K. R. H. (1975). J. Med. Chem. 18, 1117-1122.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Kappe et al. (1997[Kappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997). Tetrahedron, 53, 2803-2816.]); Li et al. (2005[Li, M., Guo, W.-S., Wen, L.-R. & Qi, W.-Y. (2005). Acta Cryst. E61, o531-o533.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Overman et al. (1995[Overman, L. E., Michael, H., Rabinowitz, M. H. & Renhowe, P. A. (1995). J. Am. Chem. Soc. 117, 2657-2658.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O3

  • Mr = 260.29

  • Triclinic, [P \overline 1]

  • a = 7.5495 (2) Å

  • b = 8.9797 (3) Å

  • c = 11.0812 (3) Å

  • α = 107.843 (2)°

  • β = 108.603 (1)°

  • γ = 98.244 (2)°

  • V = 653.07 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 16135 measured reflections

  • 3710 independent reflections

  • 2972 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.159

  • S = 1.00

  • 3710 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.37 3.1773 (13) 156
N2—H2⋯O1ii 0.86 2.00 2.8568 (13) 178
C11—H11A⋯O1iii 0.96 2.58 3.1785 (16) 121
C11—H11C⋯O2 0.96 2.44 2.8379 (17) 105
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+2, -z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound belongs to the group of esters of 2-oxo and -1,2,3,4-tetrahydropyrimidine-5-carboxylic acids, which are known as `Biginelli compounds' (Kappe et al., 1997). It has been suggested that the substituent effect may be attributable to intramolecular hydrogen bonding between the alkoxy oxygen and the proton of the pyrimidine ring NH group (Broughton et al., 1975). Several marine alkaloids having the dihydropyrimidine core unit have been found to show interesting biological activities, such as antiviral, antibacterial and anti-inflammatory (Overman et al., 1995). Many functionalized derivatives are used as calcium channel blockers and antihypertensive agents (Atwal et al., 1991). Against this background and in order to obtain detailed information on its molecular conformation, the structure of the title compound has been determined and the results are presented here.

The bond lengths and angles are comparable with the similar structure reported in the literature (Li et al., 2005). The six membered ring (atoms N1, N2, C7, C8, C9, C10) of the dihydropyrimidine group adopts a screw boat conformation; the puckering parameters are q2 = 0.257 (1) Å and ϕ = 211.7 (2)° (Cremer & Pople, 1975), and the lowest displacement asymmetry parameters ΔS(N1) is 14.4 (1)° (Nardelli, 1983), with atom O1 deviating by -0.116 (1) Å from the least squares plane of the ring.

The dihedral angle between the pyrimidine and benzene rings is 86.5 (1)°, close to the value of 82.8 (6)° found in ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5- carboxylate.

The crystal packing is stabilized by strong N—H···O and C—H···O intermolecular hydrogen bonds (Table 1).

Related literature top

For related literature, see: Atwal et al. (1991); Broughton et al. (1975); Cremer & Pople (1975); Kappe et al. (1997); Li et al. (2005); Nardelli (1983); Overman et al. (1995).

Experimental top

A mixture of benzaldehyde (0.106 g, 1 mmol), ethyl acetoacetate (0.130 g, 1 mmol) and urea (0.070 g, 1.17 mmol) was ground with four drops of ortho phosphoric acid for about 30 minutes. The reaction mixture was cooled for 15 minutes and poured into a beaker containing 50 ml of cold water. The precipitate obtained was filtered, washed with water and ethanol to get white solid. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethanol (0.26 g, 92% yield; mp 203–204).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.98 Å and N—H distance of 0.86 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C, N) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.
Ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C14H16N2O3Z = 2
Mr = 260.29F(000) = 276
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5495 (2) ÅCell parameters from 5321 reflections
b = 8.9797 (3) Åθ = 2.5–24.1°
c = 11.0812 (3) ŵ = 0.09 mm1
α = 107.843 (2)°T = 293 K
β = 108.603 (1)°Needle, colourless
γ = 98.244 (2)°0.3 × 0.2 × 0.2 mm
V = 653.07 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2972 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 29.7°, θmin = 2.5°
ω and ϕ scansh = 910
16135 measured reflectionsk = 1212
3710 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0959P)2 + 0.106P]
where P = (Fo2 + 2Fc2)/3
3710 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H16N2O3γ = 98.244 (2)°
Mr = 260.29V = 653.07 (4) Å3
Triclinic, P1Z = 2
a = 7.5495 (2) ÅMo Kα radiation
b = 8.9797 (3) ŵ = 0.09 mm1
c = 11.0812 (3) ÅT = 293 K
α = 107.843 (2)°0.3 × 0.2 × 0.2 mm
β = 108.603 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2972 reflections with I > 2σ(I)
16135 measured reflectionsRint = 0.023
3710 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
3710 reflectionsΔρmin = 0.33 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18468 (12)0.90274 (12)0.54481 (10)0.0472 (2)
O20.51966 (14)0.59340 (12)0.67258 (11)0.0546 (3)
O30.30937 (13)0.47104 (11)0.73822 (10)0.0473 (2)
N10.09885 (13)0.70875 (12)0.62494 (10)0.0389 (2)
H10.21650.66510.61070.047*
N20.10294 (14)0.85056 (13)0.55737 (11)0.0413 (2)
H20.12880.92640.52850.050*
C10.2277 (2)0.89996 (17)0.91862 (15)0.0542 (3)
H1A0.27820.94950.86990.065*
C20.2660 (3)0.9866 (2)1.05616 (17)0.0711 (5)
H2A0.33981.09421.09820.085*
C30.1961 (3)0.9148 (3)1.12917 (17)0.0757 (5)
H30.22260.97261.22120.091*
C40.0872 (4)0.7575 (3)1.0669 (2)0.0860 (6)
H40.04000.70791.11700.103*
C50.0461 (3)0.6709 (2)0.93002 (18)0.0663 (4)
H50.02920.56380.88850.080*
C60.11595 (16)0.74226 (14)0.85451 (12)0.0380 (2)
C70.05617 (15)0.65119 (13)0.70151 (12)0.0351 (2)
H70.00320.53600.68080.042*
C80.06779 (16)0.82505 (14)0.57613 (12)0.0363 (2)
C90.23610 (16)0.76219 (13)0.58195 (12)0.0371 (2)
C100.22084 (15)0.66550 (13)0.65175 (11)0.0353 (2)
C110.3835 (2)0.7861 (2)0.52121 (17)0.0556 (4)
H11A0.50170.86120.59180.083*
H11B0.33540.82860.45110.083*
H11C0.40800.68390.48170.083*
C120.36538 (16)0.57600 (13)0.68571 (12)0.0387 (2)
C130.4443 (2)0.37945 (18)0.77957 (16)0.0533 (3)
H13A0.56860.45260.84610.064*
H13B0.46380.31160.70060.064*
C140.3605 (3)0.2774 (2)0.8412 (2)0.0736 (5)
H14A0.33730.34550.91710.110*
H14B0.44950.21850.87290.110*
H14C0.24030.20230.77330.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0364 (4)0.0620 (5)0.0619 (5)0.0227 (4)0.0271 (4)0.0348 (5)
O20.0412 (5)0.0638 (6)0.0791 (7)0.0260 (4)0.0348 (5)0.0359 (5)
O30.0454 (5)0.0496 (5)0.0621 (6)0.0229 (4)0.0290 (4)0.0276 (4)
N10.0265 (4)0.0462 (5)0.0487 (5)0.0090 (4)0.0175 (4)0.0211 (4)
N20.0337 (5)0.0488 (5)0.0569 (6)0.0163 (4)0.0268 (4)0.0281 (5)
C10.0591 (8)0.0482 (7)0.0481 (7)0.0069 (6)0.0199 (6)0.0127 (6)
C20.0693 (11)0.0669 (9)0.0531 (8)0.0156 (8)0.0146 (7)0.0016 (7)
C30.0706 (11)0.1122 (15)0.0470 (8)0.0445 (11)0.0283 (8)0.0187 (9)
C40.1003 (15)0.1211 (18)0.0684 (11)0.0388 (14)0.0585 (11)0.0462 (12)
C50.0736 (10)0.0732 (10)0.0667 (9)0.0123 (8)0.0443 (8)0.0307 (8)
C60.0327 (5)0.0453 (6)0.0446 (6)0.0160 (4)0.0208 (4)0.0195 (5)
C70.0300 (5)0.0336 (5)0.0453 (6)0.0088 (4)0.0185 (4)0.0152 (4)
C80.0290 (5)0.0425 (5)0.0397 (5)0.0100 (4)0.0162 (4)0.0150 (4)
C90.0304 (5)0.0407 (5)0.0434 (6)0.0112 (4)0.0194 (4)0.0138 (4)
C100.0306 (5)0.0357 (5)0.0410 (5)0.0109 (4)0.0182 (4)0.0109 (4)
C110.0466 (7)0.0753 (9)0.0742 (9)0.0281 (7)0.0421 (7)0.0416 (8)
C120.0353 (5)0.0382 (5)0.0436 (6)0.0133 (4)0.0184 (4)0.0116 (4)
C130.0531 (8)0.0576 (7)0.0645 (8)0.0292 (6)0.0289 (7)0.0302 (7)
C140.0817 (12)0.0773 (11)0.0928 (13)0.0373 (9)0.0446 (10)0.0539 (10)
Geometric parameters (Å, º) top
O1—C81.2310 (14)C5—C61.3793 (18)
O2—C121.2133 (14)C5—H50.9300
O3—C121.3359 (15)C6—C71.5176 (16)
O3—C131.4481 (15)C7—C101.5168 (14)
N1—C81.3398 (15)C7—H70.9800
N1—C71.4716 (15)C9—C101.3436 (16)
N1—H10.8600C9—C111.4950 (15)
N2—C81.3684 (14)C10—C121.4673 (15)
N2—C91.3788 (14)C11—H11A0.9600
N2—H20.8600C11—H11B0.9600
C1—C61.3712 (18)C11—H11C0.9600
C1—C21.393 (2)C12—O21.2133 (14)
C1—H1A0.9300C13—C141.483 (2)
C2—C31.357 (3)C13—H13A0.9700
C2—H2A0.9300C13—H13B0.9700
C3—C41.362 (3)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.382 (3)C14—H14C0.9600
C4—H40.9300
C12—O3—C13116.09 (10)O1—C8—N2120.40 (10)
C8—N1—C7123.94 (9)N1—C8—N2115.72 (10)
C8—N1—H1118.0C10—C9—N2119.72 (10)
C7—N1—H1118.0C10—C9—C11127.49 (11)
C8—N2—C9124.03 (10)N2—C9—C11112.77 (10)
C8—N2—H2118.0C9—C10—C12121.18 (10)
C9—N2—H2118.0C9—C10—C7120.31 (10)
C6—C1—C2120.50 (14)C12—C10—C7118.47 (10)
C6—C1—H1A119.8C9—C11—H11A109.5
C2—C1—H1A119.8C9—C11—H11B109.5
C3—C2—C1120.33 (17)H11A—C11—H11B109.5
C3—C2—H2A119.8C9—C11—H11C109.5
C1—C2—H2A119.8H11A—C11—H11C109.5
C2—C3—C4119.62 (15)H11B—C11—H11C109.5
C2—C3—H3120.2O2—C12—O3122.18 (11)
C4—C3—H3120.2O2—C12—O3122.18 (11)
C3—C4—C5120.60 (17)O2—C12—C10126.44 (11)
C3—C4—H4119.7O2—C12—C10126.44 (11)
C5—C4—H4119.7O3—C12—C10111.36 (9)
C6—C5—C4120.44 (17)O3—C13—C14107.69 (12)
C6—C5—H5119.8O3—C13—H13A110.2
C4—C5—H5119.8C14—C13—H13A110.2
C1—C6—C5118.50 (13)O3—C13—H13B110.2
C1—C6—C7121.28 (11)C14—C13—H13B110.2
C5—C6—C7120.04 (12)H13A—C13—H13B108.5
N1—C7—C10109.36 (9)C13—C14—H14A109.5
N1—C7—C6109.37 (9)C13—C14—H14B109.5
C10—C7—C6114.22 (9)H14A—C14—H14B109.5
N1—C7—H7107.9C13—C14—H14C109.5
C10—C7—H7107.9H14A—C14—H14C109.5
C6—C7—H7107.9H14B—C14—H14C109.5
O1—C8—N1123.84 (10)
C6—C1—C2—C31.3 (3)C8—N2—C9—C11165.78 (12)
C1—C2—C3—C40.4 (3)N2—C9—C10—C12176.93 (10)
C2—C3—C4—C50.4 (3)C11—C9—C10—C124.52 (19)
C3—C4—C5—C60.4 (3)N2—C9—C10—C70.98 (17)
C2—C1—C6—C51.3 (2)C11—C9—C10—C7177.57 (12)
C2—C1—C6—C7173.94 (13)N1—C7—C10—C918.31 (14)
C4—C5—C6—C10.4 (3)C6—C7—C10—C9104.61 (12)
C4—C5—C6—C7174.83 (16)N1—C7—C10—C12163.72 (9)
C8—N1—C7—C1031.02 (15)C6—C7—C10—C1273.35 (12)
C8—N1—C7—C694.75 (12)C13—O3—C12—O20.36 (18)
C1—C6—C7—N175.26 (14)C13—O3—C12—O20.36 (18)
C5—C6—C7—N199.89 (14)C13—O3—C12—C10178.13 (10)
C1—C6—C7—C1047.66 (15)C9—C10—C12—O210.07 (19)
C5—C6—C7—C10137.19 (13)C7—C10—C12—O2167.88 (12)
C7—N1—C8—O1160.27 (11)C9—C10—C12—O210.07 (19)
C7—N1—C8—N222.03 (16)C7—C10—C12—O2167.88 (12)
C9—N2—C8—O1175.96 (11)C9—C10—C12—O3171.52 (10)
C9—N2—C8—N11.82 (17)C7—C10—C12—O310.53 (14)
C8—N2—C9—C1012.97 (18)C12—O3—C13—C14177.11 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.373.1773 (13)156
N2—H2···O1ii0.862.002.8568 (13)178
C11—H11A···O1iii0.962.583.1785 (16)121
C11—H11C···O20.962.442.8379 (17)105
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H16N2O3
Mr260.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5495 (2), 8.9797 (3), 11.0812 (3)
α, β, γ (°)107.843 (2), 108.603 (1), 98.244 (2)
V3)653.07 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16135, 3710, 2972
Rint0.023
(sin θ/λ)max1)0.698
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.159, 1.00
No. of reflections3710
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.33

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.373.1773 (13)156.0
N2—H2···O1ii0.862.002.8568 (13)178.2
C11—H11A···O1iii0.962.583.1785 (16)120.5
C11—H11C···O20.962.442.8379 (17)104.5
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x+1, y, z.
 

Acknowledgements

MNM, AR, CAMAH and SSN thank the management of The New College, Chennai, India, for providing the necessary facilities.

References

First citationAtwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O Reilly, B. C. (1991). J. Med. Chem. 34, 806–811.  Google Scholar
First citationBroughton, B. J., Chaplen, P., Knowles, P., Lunt, E., Marshall, S. M., Pain, D. L. & Wooldridge, K. R. H. (1975). J. Med. Chem. 18, 1117–1122.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997). Tetrahedron, 53, 2803–2816.  CSD CrossRef CAS Google Scholar
First citationLi, M., Guo, W.-S., Wen, L.-R. & Qi, W.-Y. (2005). Acta Cryst. E61, o531–o533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOverman, L. E., Michael, H., Rabinowitz, M. H. & Renhowe, P. A. (1995). J. Am. Chem. Soc. 117, 2657–2658.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds