organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-4-methyl­phenyl 4-toluene­sulfonate

aDepartment of Chemistry, Valliammai Engineering College, Chennai, India, bDepartment of Physics, AMET University, Kanathur, Chennai, India, and cDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 6 August 2008; accepted 10 August 2008; online 16 August 2008)

In the title mol­ecule, C15H16O4S, the inter­planar angle between the two aromatic rings is 45.07 (7)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For related literature, see: Manivannan et al. (2005a[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239-o241.]); Spungin et al. (1984[Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1984). Biochim. Biophys. Acta, 769, 531-542.]); Yachi et al. (1989[Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hananon, M. (1989). Biochim. Biophys. Acta, 978, 1-7.]). Similar compounds have been reported by: Manivannan et al. (2005b[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242-o244.]); Ramachandran et al.(2007[Ramachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O4S

  • Mr = 292.34

  • Triclinic, [P \overline 1]

  • a = 7.932 (2) Å

  • b = 8.736 (3) Å

  • c = 10.934 (3) Å

  • α = 93.785 (5)°

  • β = 98.453 (5)°

  • γ = 102.476 (4)°

  • V = 727.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 (2) K

  • 0.48 × 0.46 × 0.14 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.902, Tmax = 0.970

  • 8439 measured reflections

  • 3348 independent reflections

  • 2220 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.140

  • S = 1.02

  • 3348 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O1i 0.96 2.60 3.327 (4) 133
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several compounds containing the para-toluene sulfonate moiety are used in the fields of biology and industry. The merging of lipids can be monitored using a derivative of para-toluene sulfonate (Yachi et al., 1989). This method has been used in studying the membrane fusion during the acrosome reaction (Spungin et al., 1984).

The geometric parameters in the title compound agree with the reported values of similar structures (Manivannan et al., 2005a,b; Ramachandran et al., 2007). The aromatic rings make a dihedral angle of 45.07 (7)° with respect to each other. The crystal packing is stabilized by weak intermolecular C—H···O interactions.

The angle between the two oxygen atoms of the –SO2- group is much larger than the tetrahedral angle which leads to the decrease in the –O—S—Ar angle.

Related literature top

For related literature, see: Manivannan et al. (2005a); Spungin et al. (1984); Yachi et al. (1989). Similar compounds have been reported by: Manivannan et al. (2005b); Ramachandran et al.(2007).

Experimental top

A solution of vanillin in toluene was treated with amalgamated Zinc wool and concentrated HCl under reflux for thirty hours. The reaction mixture was cooled. The organic layer was separated and the aqueous layer was washed with ether. The combined ether and toluene solutions were washed with water, dried over anhydrous calcium chloride and the solvent removed under reduced pressure to get 2-methoxy-4-methyl phenol. A mixture of the above phenol and triethyl amine in acetone was treated with p-toluene sulfonyl chloride at room temperature for twelve hours. The residue was washed with triethyl amine solution and water and dried. Diffraction quality crystals were obtained from the solid by recrystallizing from ethanol.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
2-Methoxy-4-methylphenyl 4-toluenesulfonate top
Crystal data top
C15H16O4SZ = 2
Mr = 292.34F(000) = 308
Triclinic, P1Dx = 1.334 Mg m3
a = 7.932 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.736 (3) ÅCell parameters from 2654 reflections
c = 10.934 (3) Åθ = 1.9–24.7°
α = 93.785 (5)°µ = 0.23 mm1
β = 98.453 (5)°T = 293 K
γ = 102.476 (4)°Block, colourless
V = 727.9 (4) Å30.48 × 0.46 × 0.14 mm
Data collection top
Bruker KappaAPEX2
diffractometer
3348 independent reflections
Radiation source: fine-focus sealed tube2220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.902, Tmax = 0.970k = 1111
8439 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.2027P]
where P = (Fo2 + 2Fc2)/3
3348 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H16O4Sγ = 102.476 (4)°
Mr = 292.34V = 727.9 (4) Å3
Triclinic, P1Z = 2
a = 7.932 (2) ÅMo Kα radiation
b = 8.736 (3) ŵ = 0.23 mm1
c = 10.934 (3) ÅT = 293 K
α = 93.785 (5)°0.48 × 0.46 × 0.14 mm
β = 98.453 (5)°
Data collection top
Bruker KappaAPEX2
diffractometer
3348 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2220 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.970Rint = 0.028
8439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
3348 reflectionsΔρmin = 0.20 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14427 (8)0.00747 (7)0.26949 (6)0.0589 (2)
O30.02375 (19)0.13695 (17)0.32049 (15)0.0545 (4)
C10.2907 (3)0.0764 (2)0.1975 (2)0.0494 (5)
O40.0552 (2)0.41635 (18)0.23259 (14)0.0597 (4)
C130.1215 (3)0.3741 (2)0.3550 (2)0.0460 (5)
C120.2000 (3)0.4645 (3)0.4347 (2)0.0538 (6)
H120.21160.56310.40440.065*
O10.0236 (3)0.0562 (2)0.17935 (19)0.0802 (6)
C80.1067 (3)0.2266 (2)0.4028 (2)0.0475 (5)
O20.2394 (2)0.11439 (19)0.37184 (19)0.0777 (6)
C60.4487 (3)0.0852 (3)0.2655 (2)0.0572 (6)
H60.47730.04760.34920.069*
C50.5639 (3)0.1506 (3)0.2077 (2)0.0616 (6)
H50.67050.15670.25330.074*
C90.1631 (3)0.1736 (3)0.5253 (2)0.0626 (7)
H90.14890.07620.55610.075*
C110.2616 (3)0.4110 (3)0.5584 (2)0.0629 (7)
C20.2475 (3)0.1326 (3)0.0737 (2)0.0637 (7)
H20.14080.12690.02800.076*
C40.5240 (3)0.2066 (3)0.0845 (3)0.0608 (6)
C100.2412 (4)0.2652 (4)0.6028 (2)0.0706 (7)
H100.28080.22870.68620.085*
C30.3654 (4)0.1975 (3)0.0186 (3)0.0726 (8)
H30.33680.23580.06500.087*
C70.6524 (4)0.2766 (4)0.0219 (3)0.0907 (10)
H7A0.60630.38780.00130.136*
H7B0.76200.25890.07730.136*
H7C0.67020.22740.05260.136*
C140.3479 (4)0.5125 (4)0.6429 (3)0.0940 (10)
H14A0.46380.45530.67940.141*
H14B0.35440.60690.59550.141*
H14C0.28020.53970.70750.141*
C150.0926 (5)0.5547 (4)0.1778 (3)0.0943 (10)
H15A0.21710.54220.18580.141*
H15B0.04160.57170.09130.141*
H15C0.04440.64350.21910.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0625 (4)0.0381 (3)0.0820 (5)0.0201 (3)0.0184 (3)0.0062 (3)
O30.0500 (9)0.0452 (8)0.0746 (11)0.0201 (7)0.0160 (8)0.0087 (7)
C10.0540 (13)0.0374 (11)0.0601 (14)0.0134 (10)0.0137 (11)0.0086 (10)
O40.0777 (11)0.0461 (9)0.0574 (10)0.0216 (8)0.0090 (8)0.0003 (7)
C130.0429 (11)0.0438 (11)0.0540 (13)0.0108 (9)0.0157 (10)0.0054 (10)
C120.0507 (13)0.0521 (13)0.0676 (16)0.0201 (11)0.0225 (12)0.0156 (11)
O10.0841 (13)0.0644 (11)0.1083 (15)0.0442 (10)0.0178 (11)0.0297 (11)
C80.0453 (12)0.0447 (11)0.0562 (14)0.0143 (9)0.0138 (10)0.0058 (10)
O20.0839 (13)0.0459 (9)0.1019 (14)0.0120 (9)0.0253 (11)0.0149 (9)
C60.0562 (14)0.0547 (14)0.0599 (15)0.0118 (11)0.0095 (12)0.0019 (11)
C50.0524 (14)0.0618 (15)0.0749 (17)0.0186 (12)0.0144 (12)0.0111 (13)
C90.0694 (16)0.0578 (14)0.0625 (16)0.0150 (13)0.0202 (13)0.0029 (12)
C110.0477 (13)0.0779 (18)0.0681 (17)0.0152 (12)0.0168 (12)0.0248 (14)
C20.0634 (15)0.0665 (16)0.0623 (16)0.0202 (13)0.0043 (12)0.0113 (13)
C40.0647 (16)0.0496 (13)0.0744 (17)0.0145 (12)0.0282 (13)0.0106 (12)
C100.0700 (17)0.0835 (19)0.0542 (15)0.0089 (15)0.0104 (13)0.0046 (14)
C30.090 (2)0.0742 (18)0.0568 (16)0.0194 (16)0.0220 (15)0.0027 (13)
C70.093 (2)0.080 (2)0.114 (3)0.0278 (18)0.056 (2)0.0064 (18)
C140.0724 (19)0.129 (3)0.092 (2)0.036 (2)0.0139 (17)0.052 (2)
C150.144 (3)0.0675 (18)0.075 (2)0.045 (2)0.0110 (19)0.0157 (15)
Geometric parameters (Å, º) top
S1—O21.4154 (19)C9—H90.9300
S1—O11.4219 (19)C11—C101.383 (4)
S1—O31.5954 (17)C11—C141.514 (4)
S1—C11.751 (2)C2—C31.382 (4)
O3—C81.414 (3)C2—H20.9300
C1—C21.376 (3)C4—C31.376 (4)
C1—C61.380 (3)C4—C71.516 (3)
O4—C131.360 (3)C10—H100.9300
O4—C151.421 (3)C3—H30.9300
C13—C121.383 (3)C7—H7A0.9600
C13—C81.393 (3)C7—H7B0.9600
C12—C111.382 (3)C7—H7C0.9600
C12—H120.9300C14—H14A0.9600
C8—C91.364 (3)C14—H14B0.9600
C6—C51.381 (3)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C5—C41.369 (4)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C9—C101.376 (4)
O2—S1—O1120.05 (12)C10—C11—C14121.2 (3)
O2—S1—O3108.67 (11)C1—C2—C3118.8 (2)
O1—S1—O3102.79 (10)C1—C2—H2120.6
O2—S1—C1108.96 (11)C3—C2—H2120.6
O1—S1—C1110.55 (12)C5—C4—C3118.6 (2)
O3—S1—C1104.58 (9)C5—C4—C7120.7 (3)
C8—O3—S1117.90 (13)C3—C4—C7120.7 (3)
C2—C1—C6120.6 (2)C9—C10—C11120.9 (2)
C2—C1—S1119.77 (18)C9—C10—H10119.6
C6—C1—S1119.66 (18)C11—C10—H10119.6
C13—O4—C15116.8 (2)C4—C3—C2121.5 (2)
O4—C13—C12125.8 (2)C4—C3—H3119.2
O4—C13—C8116.1 (2)C2—C3—H3119.2
C12—C13—C8118.1 (2)C4—C7—H7A109.5
C11—C12—C13121.2 (2)C4—C7—H7B109.5
C11—C12—H12119.4H7A—C7—H7B109.5
C13—C12—H12119.4C4—C7—H7C109.5
C9—C8—C13121.4 (2)H7A—C7—H7C109.5
C9—C8—O3121.2 (2)H7B—C7—H7C109.5
C13—C8—O3117.30 (19)C11—C14—H14A109.5
C1—C6—C5119.3 (2)C11—C14—H14B109.5
C1—C6—H6120.4H14A—C14—H14B109.5
C5—C6—H6120.4C11—C14—H14C109.5
C4—C5—C6121.2 (2)H14A—C14—H14C109.5
C4—C5—H5119.4H14B—C14—H14C109.5
C6—C5—H5119.4O4—C15—H15A109.5
C8—C9—C10119.5 (2)O4—C15—H15B109.5
C8—C9—H9120.3H15A—C15—H15B109.5
C10—C9—H9120.3O4—C15—H15C109.5
C12—C11—C10118.9 (2)H15A—C15—H15C109.5
C12—C11—C14119.9 (3)H15B—C15—H15C109.5
O2—S1—O3—C859.07 (17)S1—O3—C8—C13104.3 (2)
O1—S1—O3—C8172.70 (15)C2—C1—C6—C50.3 (4)
C1—S1—O3—C857.18 (17)S1—C1—C6—C5179.55 (18)
O2—S1—C1—C2154.40 (19)C1—C6—C5—C40.0 (4)
O1—S1—C1—C220.4 (2)C13—C8—C9—C102.0 (4)
O3—S1—C1—C289.5 (2)O3—C8—C9—C10179.2 (2)
O2—S1—C1—C625.4 (2)C13—C12—C11—C101.0 (4)
O1—S1—C1—C6159.38 (18)C13—C12—C11—C14179.6 (2)
O3—S1—C1—C690.64 (19)C6—C1—C2—C30.2 (4)
C15—O4—C13—C129.7 (3)S1—C1—C2—C3179.6 (2)
C15—O4—C13—C8170.7 (2)C6—C5—C4—C30.4 (4)
O4—C13—C12—C11179.3 (2)C6—C5—C4—C7179.4 (2)
C8—C13—C12—C110.3 (3)C8—C9—C10—C110.7 (4)
O4—C13—C8—C9177.8 (2)C12—C11—C10—C90.8 (4)
C12—C13—C8—C91.8 (3)C14—C11—C10—C9179.8 (2)
O4—C13—C8—O30.6 (3)C5—C4—C3—C20.4 (4)
C12—C13—C8—O3179.08 (18)C7—C4—C3—C2179.3 (3)
S1—O3—C8—C978.4 (2)C1—C2—C3—C40.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O1i0.962.603.327 (4)133
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H16O4S
Mr292.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.932 (2), 8.736 (3), 10.934 (3)
α, β, γ (°)93.785 (5), 98.453 (5), 102.476 (4)
V3)727.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.48 × 0.46 × 0.14
Data collection
DiffractometerBruker KappaAPEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.902, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
8439, 3348, 2220
Rint0.028
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.140, 1.02
No. of reflections3348
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O1i0.962.603.327 (4)133
Symmetry code: (i) x, y1, z.
 

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239–o241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242–o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1984). Biochim. Biophys. Acta, 769, 531–542.  Google Scholar
First citationYachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hananon, M. (1989). Biochim. Biophys. Acta, 978, 1–7.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds