organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1774-o1775

3-(4-Fluoro­phenyl)-1-[1′-(4-fluoro­phenyl)-2-oxo-5′,6′,7′,7a′-tetra­hydro-1H-indole-3(2H)-spiro-3′(2′H)-1H′-pyrrol­izin-2′-yl]prop-2-en-1-one

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 6 August 2008; accepted 10 August 2008; online 16 August 2008)

In the title compound, C29H24F2N2O2, one of the pyrrolidine rings of the pyrrolizine system is disordered over two sites, with occupancy factors 0.734:0.266 (12). Both components of the disordered pyrrolidine ring adopt envelope conformations, whereas the other pyrrolidine ring adopts a twist conformation. The mol­ecules are linked into centrosymmetric dimers by N—H⋯O hydrogen bonds and the dimers are connected via C—H⋯π inter­actions. The crystal structure is also stabilized by inter­molecular C—H⋯F hydrogen bonds.

Related literature

For related literature, see: Atal (1978[Atal, C. K. (1978). Lloydia, 41, 312-326.]); Cordel (1981[Cordel, G. (1981). Introduction to Alkaloids, A Biogenetic Approach. New York: Wiley International.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Denny (2001[Denny, W. A. (2001). Curr. Med. Chem. 8, 533-544.]); Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]); Ramesh et al. (2007[Ramesh, P., Murugavel, S., SubbiahPandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4106-o4107.]); Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]).

[Scheme 1]

Experimental

Crystal data
  • C29H24F2N2O2

  • Mr = 470.50

  • Triclinic, [P \overline 1]

  • a = 8.3985 (4) Å

  • b = 12.0018 (6) Å

  • c = 12.5628 (6) Å

  • α = 96.464 (2)°

  • β = 104.348 (2)°

  • γ = 104.144 (2)°

  • V = 1169.23 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker KappaAPEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.972, Tmax = 0.981

  • 25777 measured reflections

  • 6118 independent reflections

  • 4000 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.168

  • S = 1.05

  • 6118 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the ring composed of atoms C8–C13.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.09 2.922 (2) 164
C9—H9⋯F2ii 0.93 2.55 3.165 (3) 124
C28—H28⋯Cg1iii 0.93 2.97 3.886 (3) 169
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The spiro ring system is a frequently encountered structural motif in many pharmacologically relevant alkaloids (Cordel, 1981). Pyrrolizidine alkaloids occur in more than 40 genera, and are responsible for heavy losses of livestock and poisoning in man due to their hepatotoxity. These alkaloids are also reported to possess a number of other biological activities (Atal, 1978) and are used as DNA minor groove alkylating agents (Denny, 2001). Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Indole derivatives exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle, 1960; Ho et al., 1986). Indoles have also been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). In view of this biological importance, an X-ray study of the title compound, (I), was carried out.

An ORTEP (Farrugia, 1997) plot of the molecule is shown in Fig. 1. The pyrrolizine ring system is folded about the bridging N1—C1 bond, as observed in related structures (Ramesh et al., 2007). The sum of angles at N1 (339°) is in accordance with sp3 hybridization. The fluorine atoms attached at C11 and C27 are coplanar with the phenyl rings C8–C13 and C24–C29 as indicated by the torsion angles F1—C11—C12—C13 [179.4 (2)°] and F2—C27—C28—C29 [178.6 (2)°] respectively. The indole moiety is planar [maximum deviation of -0.045 (3)° from the least square plane defined by all non hydrogen atoms in the molecule] and makes a dihedral angle of 37 (6)° with the ring C8–C13, 53.7 (6)° with the ring C24–C29. Both the phenyl rings are nearly perpendicular to each other and are oriented at an angle of 82.1 (7)° with respect to each other. In the pyrrolizine ring system, the pyrrolidine ring (N1/C1/C5/C6/C7) adopts a twist conformation with Cremer & Pople (1975) puckering parameters q2 and ϕ of 0.425 (2) Å and 123.6 (3)° respectively. The disordered pyrrolidine ring adopts an envelope conformation in both the major and minor conformers with Cremer & Pople (1975) puckering parameters q2 and ϕ of 0.323 (4) Å and -59.2 (8)°, respectively, for the major conformer (N1/C1–C4), and 0.271 (13) Å and 96.8 (1)°, respectively, for the minor conformer (N1/C1/C2/C3A/C4). Atom C3/C3A deviates by -0.484 (3) Å / 0.402 (9) Å from the least square planes through the remaining four atoms N1, C1, C2 and C4.

In the crystal structure, symmetry-related molecules form N—H···O hydrogen-bonded dimers and the dimers are linked via C—H···π interactions involving C8–C13 benzene rings. The crystal structure is also stabilized by intermolecular C—H···F hydrogen bonds (Table 1) and van der Waals forces.

Related literature top

For related literature, see: Atal (1978); Cordel (1981); Cremer & Pople (1975); Denny (2001); Farrugia (1997); Harris & Uhle (1960); Ho et al. (1986); Rajeswaran et al. (1999); Ramesh et al. (2007); Stevenson et al. (2000).

Experimental top

A solution of (1E,6E)-4-(4-flurobenzylidene)-1,7-bis(4- flurophenyl)hepta-1,6-diene-3,5-dione (1 mmol), isatin (1 mmol) and L-proline (1 mmol) in aqueous methanol (20 ml) was refluxed until the disappearance of starting material as evidenced by TLC. The solvent was removed under reduced pressure and the crude product was purified by column chromatography using petroleum ether–ethylacetate (5:1) as eluent. The final product was recrystallized in ethanol and chloroform (2:8).

Refinement top

The C atom of pyrrolizine unit is disordered over two positions with site occupancies of C3 = 0.734 (1) and C3A = 0.266 (1). H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, and 0.97 Å for aromatic, methine and methylene respectively, and with Uiso(H) = 1.2Ueq(C) for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonds have been omitted.
3-(4-Fluorophenyl)-1-[1'-(4-fluorophenyl)-2-oxo-5',6',7',7a'-tetrahydro- 1H-indole-3(2H)-spiro-3'(2'H)-1H'-pyrrolizin-2'- yl]prop-2-en-1-one top
Crystal data top
C29H24F2N2O2Z = 2
Mr = 470.50F(000) = 492
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3985 (4) ÅCell parameters from 7237 reflections
b = 12.0018 (6) Åθ = 2.2–27.9°
c = 12.5628 (6) ŵ = 0.10 mm1
α = 96.464 (2)°T = 293 K
β = 104.348 (2)°Prism, colourless
γ = 104.144 (2)°0.30 × 0.20 × 0.20 mm
V = 1169.23 (10) Å3
Data collection top
Bruker KappaAPEXII
diffractometer
6118 independent reflections
Radiation source: fine-focus sealed tube4000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1011
Tmin = 0.972, Tmax = 0.981k = 1616
25777 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.4073P]
where P = (Fo2 + 2Fc2)/3
6118 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C29H24F2N2O2γ = 104.144 (2)°
Mr = 470.50V = 1169.23 (10) Å3
Triclinic, P1Z = 2
a = 8.3985 (4) ÅMo Kα radiation
b = 12.0018 (6) ŵ = 0.10 mm1
c = 12.5628 (6) ÅT = 293 K
α = 96.464 (2)°0.30 × 0.20 × 0.20 mm
β = 104.348 (2)°
Data collection top
Bruker KappaAPEXII
diffractometer
6118 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4000 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.032
25777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
6118 reflectionsΔρmin = 0.24 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2007 (2)0.28284 (17)0.05257 (14)0.0421 (4)
H10.23390.35800.02880.051*
C20.0256 (3)0.2104 (2)0.02359 (18)0.0643 (6)
H2A0.03590.26020.06130.077*0.734 (12)
H2B0.03780.15290.07950.077*0.734 (12)
H2C0.02350.12970.04460.077*0.266 (12)
H2D0.00670.24250.09060.077*0.266 (12)
C30.0654 (5)0.1528 (5)0.0501 (3)0.0599 (12)0.734 (12)
H3A0.03970.07950.06030.072*0.734 (12)
H3B0.18830.13770.01990.072*0.734 (12)
C3A0.0922 (11)0.2214 (18)0.0519 (8)0.066 (4)0.266 (12)
H3C0.14050.28580.03810.079*0.266 (12)
H3D0.18570.15020.03530.079*0.266 (12)
C40.0019 (2)0.2405 (2)0.16055 (19)0.0590 (6)
H4A0.06710.29450.16150.071*0.734 (12)
H4B0.00030.20040.22330.071*0.734 (12)
H4C0.00170.16690.18610.071*0.266 (12)
H4D0.04260.28730.20750.071*0.266 (12)
C50.3222 (2)0.28514 (14)0.24864 (13)0.0360 (4)
C60.4579 (2)0.28659 (14)0.18298 (13)0.0331 (3)
H60.51170.36810.18060.040*
C70.3473 (2)0.22630 (14)0.06553 (13)0.0350 (3)
H70.30110.14320.06650.042*
C80.4353 (2)0.23548 (14)0.02503 (13)0.0350 (3)
C90.5264 (2)0.34286 (15)0.04026 (15)0.0432 (4)
H90.53450.41050.00740.052*
C100.6052 (3)0.35163 (17)0.12456 (16)0.0494 (5)
H100.66600.42380.13430.059*
C110.5911 (3)0.25112 (18)0.19290 (16)0.0489 (5)
C120.5029 (3)0.14399 (17)0.18227 (16)0.0510 (5)
H120.49510.07720.23090.061*
C130.4251 (2)0.13654 (16)0.09742 (15)0.0437 (4)
H130.36480.06370.08880.052*
C140.2918 (2)0.18120 (15)0.30613 (15)0.0403 (4)
C150.2356 (3)0.06244 (17)0.26645 (18)0.0527 (5)
H150.20220.03380.19000.063*
C160.2291 (3)0.01396 (19)0.3409 (2)0.0677 (7)
H160.18870.09420.31430.081*
C170.2819 (4)0.0282 (2)0.4534 (2)0.0740 (7)
H170.27940.02430.50240.089*
C180.3391 (3)0.1468 (2)0.49613 (19)0.0628 (6)
H180.37440.17510.57270.075*
C190.3414 (2)0.22114 (16)0.42044 (15)0.0445 (4)
C200.3922 (2)0.38838 (15)0.34997 (13)0.0371 (4)
C210.5974 (2)0.23417 (15)0.23597 (14)0.0381 (4)
C220.7119 (2)0.30084 (16)0.34466 (15)0.0430 (4)
H220.71060.37740.36560.052*
C230.8167 (2)0.25794 (18)0.41428 (16)0.0459 (4)
H230.82780.18530.38840.055*
C240.9164 (2)0.31492 (18)0.52817 (16)0.0464 (4)
C250.8823 (3)0.4085 (2)0.58393 (18)0.0585 (5)
H250.79640.43830.54660.070*
C260.9719 (3)0.4583 (2)0.6928 (2)0.0680 (6)
H260.94660.52010.73030.082*
C271.0995 (3)0.4140 (2)0.7441 (2)0.0720 (7)
C281.1373 (4)0.3227 (3)0.6940 (2)0.0853 (9)
H281.22460.29440.73190.102*
C291.0442 (3)0.2719 (2)0.5854 (2)0.0700 (7)
H291.06770.20790.55020.084*
N10.17837 (18)0.30269 (14)0.16568 (12)0.0426 (4)
N20.3950 (2)0.34354 (13)0.44352 (12)0.0453 (4)
H20.42590.38500.50950.054*
O10.60955 (18)0.14274 (12)0.19211 (12)0.0536 (4)
O20.44108 (18)0.49119 (11)0.34531 (10)0.0478 (3)
F21.1884 (3)0.46239 (17)0.85163 (14)0.1156 (7)
F10.6690 (2)0.25907 (13)0.27532 (12)0.0781 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (9)0.0485 (10)0.0329 (9)0.0100 (7)0.0052 (7)0.0006 (7)
C20.0424 (10)0.0880 (17)0.0456 (11)0.0135 (10)0.0019 (9)0.0116 (11)
C30.0409 (16)0.062 (3)0.0602 (19)0.0008 (15)0.0059 (13)0.0076 (17)
C3A0.036 (4)0.094 (11)0.055 (5)0.011 (5)0.001 (3)0.003 (6)
C40.0372 (9)0.0743 (15)0.0586 (13)0.0093 (9)0.0146 (9)0.0037 (11)
C50.0377 (8)0.0356 (8)0.0290 (8)0.0045 (6)0.0097 (6)0.0038 (6)
C60.0364 (8)0.0315 (8)0.0271 (7)0.0046 (6)0.0082 (6)0.0009 (6)
C70.0391 (8)0.0324 (8)0.0270 (8)0.0040 (6)0.0071 (6)0.0015 (6)
C80.0381 (8)0.0365 (8)0.0271 (7)0.0090 (6)0.0064 (6)0.0026 (6)
C90.0528 (10)0.0344 (9)0.0389 (9)0.0082 (7)0.0132 (8)0.0016 (7)
C100.0574 (11)0.0436 (10)0.0467 (11)0.0069 (8)0.0192 (9)0.0125 (8)
C110.0559 (11)0.0577 (12)0.0377 (10)0.0160 (9)0.0210 (8)0.0101 (8)
C120.0675 (12)0.0449 (10)0.0417 (10)0.0146 (9)0.0232 (9)0.0022 (8)
C130.0555 (10)0.0345 (9)0.0377 (9)0.0059 (7)0.0171 (8)0.0005 (7)
C140.0434 (9)0.0374 (9)0.0388 (9)0.0056 (7)0.0173 (7)0.0021 (7)
C150.0644 (12)0.0398 (10)0.0519 (11)0.0049 (9)0.0259 (10)0.0012 (8)
C160.0881 (17)0.0403 (11)0.0809 (17)0.0104 (11)0.0425 (14)0.0127 (11)
C170.0954 (19)0.0603 (15)0.0785 (18)0.0231 (13)0.0365 (15)0.0334 (13)
C180.0795 (15)0.0646 (14)0.0476 (12)0.0178 (12)0.0228 (11)0.0194 (10)
C190.0482 (10)0.0450 (10)0.0386 (9)0.0084 (8)0.0155 (8)0.0049 (8)
C200.0393 (8)0.0384 (9)0.0291 (8)0.0086 (7)0.0080 (6)0.0027 (7)
C210.0392 (8)0.0396 (9)0.0358 (9)0.0092 (7)0.0128 (7)0.0076 (7)
C220.0414 (9)0.0442 (10)0.0404 (9)0.0111 (7)0.0087 (7)0.0052 (8)
C230.0439 (9)0.0536 (11)0.0443 (10)0.0161 (8)0.0156 (8)0.0132 (8)
C240.0389 (9)0.0558 (11)0.0418 (10)0.0086 (8)0.0089 (8)0.0151 (8)
C250.0564 (12)0.0670 (14)0.0446 (11)0.0175 (10)0.0003 (9)0.0117 (10)
C260.0739 (15)0.0629 (14)0.0493 (12)0.0054 (12)0.0016 (11)0.0049 (11)
C270.0622 (14)0.0758 (17)0.0485 (13)0.0085 (12)0.0116 (11)0.0164 (12)
C280.0637 (15)0.107 (2)0.0712 (17)0.0280 (15)0.0137 (13)0.0259 (16)
C290.0569 (13)0.0871 (17)0.0663 (15)0.0310 (12)0.0057 (11)0.0184 (13)
N10.0354 (7)0.0516 (9)0.0343 (7)0.0099 (6)0.0066 (6)0.0052 (6)
N20.0584 (9)0.0433 (9)0.0272 (7)0.0071 (7)0.0114 (7)0.0028 (6)
O10.0599 (8)0.0498 (8)0.0526 (8)0.0225 (7)0.0145 (7)0.0033 (6)
O20.0624 (8)0.0360 (7)0.0370 (7)0.0084 (6)0.0096 (6)0.0023 (5)
F20.1142 (14)0.1158 (14)0.0608 (10)0.0031 (11)0.0354 (10)0.0071 (9)
F10.1005 (11)0.0816 (10)0.0676 (9)0.0190 (8)0.0574 (8)0.0156 (7)
Geometric parameters (Å, º) top
C1—N11.479 (2)C11—F11.356 (2)
C1—C21.524 (3)C11—C121.357 (3)
C1—C71.529 (2)C12—C131.382 (3)
C1—H10.9800C12—H120.9300
C2—C31.468 (4)C13—H130.9300
C2—C3A1.549 (11)C14—C151.377 (3)
C2—H2A0.9700C14—C191.384 (2)
C2—H2B0.9700C15—C161.383 (3)
C2—H2C0.9700C15—H150.9300
C2—H2D0.9700C16—C171.367 (4)
C3—C41.531 (4)C16—H160.9300
C3—H3A0.9700C17—C181.383 (4)
C3—H3B0.9700C17—H170.9300
C3A—C41.359 (9)C18—C191.375 (3)
C3A—H3C0.9700C18—H180.9300
C3A—H3D0.9700C19—N21.400 (2)
C4—N11.469 (2)C20—O21.214 (2)
C4—H4A0.9700C20—N21.344 (2)
C4—H4B0.9700C21—O11.210 (2)
C4—H4C0.9700C21—C221.469 (2)
C4—H4D0.9700C22—C231.321 (3)
C5—N11.463 (2)C22—H220.9300
C5—C141.510 (2)C23—C241.457 (3)
C5—C201.555 (2)C23—H230.9300
C5—C61.562 (2)C24—C291.381 (3)
C6—C211.510 (2)C24—C251.383 (3)
C6—C71.521 (2)C25—C261.372 (3)
C6—H60.9800C25—H250.9300
C7—C81.503 (2)C26—C271.364 (4)
C7—H70.9800C26—H260.9300
C8—C131.383 (2)C27—C281.346 (4)
C8—C91.389 (2)C27—F21.353 (3)
C9—C101.382 (3)C28—C291.376 (4)
C9—H90.9300C28—H280.9300
C10—C111.361 (3)C29—H290.9300
C10—H100.9300N2—H20.8600
N1—C1—C2105.62 (15)C1—C7—H7108.2
N1—C1—C7105.01 (14)C13—C8—C9117.88 (16)
C2—C1—C7117.17 (16)C13—C8—C7120.64 (15)
N1—C1—H1109.6C9—C8—C7121.47 (15)
C2—C1—H1109.6C10—C9—C8121.56 (17)
C7—C1—H1109.6C10—C9—H9119.2
C3—C2—C1105.6 (2)C8—C9—H9119.2
C1—C2—C3A101.9 (4)C11—C10—C9117.82 (17)
C3—C2—H2A110.6C11—C10—H10121.1
C1—C2—H2A110.6C9—C10—H10121.1
C3A—C2—H2A80.4F1—C11—C12118.78 (18)
C3—C2—H2B110.6F1—C11—C10118.11 (18)
C1—C2—H2B110.6C12—C11—C10123.12 (17)
C3A—C2—H2B139.4C11—C12—C13118.41 (17)
H2A—C2—H2B108.8C11—C12—H12120.8
C3—C2—H2C78.3C13—C12—H12120.8
C1—C2—H2C111.4C12—C13—C8121.21 (17)
C3A—C2—H2C111.4C12—C13—H13119.4
H2A—C2—H2C132.4C8—C13—H13119.4
C3—C2—H2D135.4C15—C14—C19118.80 (18)
C1—C2—H2D111.4C15—C14—C5132.45 (17)
C3A—C2—H2D111.4C19—C14—C5108.66 (15)
H2B—C2—H2D78.9C14—C15—C16119.7 (2)
H2C—C2—H2D109.2C14—C15—H15120.2
C2—C3—C4104.1 (3)C16—C15—H15120.2
C4—C3—H2C130.6C17—C16—C15120.1 (2)
C2—C3—H3A110.9C17—C16—H16119.9
C4—C3—H3A110.9C15—C16—H16119.9
H2C—C3—H3A76.6C16—C17—C18121.8 (2)
C2—C3—H3B110.9C16—C17—H17119.1
C4—C3—H3B110.9C18—C17—H17119.1
H2C—C3—H3B111.9C19—C18—C17117.1 (2)
H3A—C3—H3B108.9C19—C18—H18121.5
C4—C3A—C2108.7 (7)C17—C18—H18121.5
C4—C3A—H3C109.9C18—C19—C14122.56 (19)
C2—C3A—H3C109.9C18—C19—N2127.44 (18)
C4—C3A—H3D109.9C14—C19—N2109.98 (16)
C2—C3A—H3D109.9O2—C20—N2126.12 (15)
H3C—C3A—H3D108.3O2—C20—C5125.79 (15)
C3A—C4—N1106.7 (5)N2—C20—C5108.05 (14)
N1—C4—C3105.11 (19)O1—C21—C22123.42 (17)
C3A—C4—H4A77.2O1—C21—C6121.68 (16)
N1—C4—H4A110.7C22—C21—C6114.88 (15)
C3—C4—H4A110.7C23—C22—C21123.53 (18)
C3A—C4—H4B136.2C23—C22—H22118.2
N1—C4—H4B110.7C21—C22—H22118.2
C3—C4—H4B110.7C22—C23—C24125.45 (19)
H4A—C4—H4B108.8C22—C23—H23117.3
C3A—C4—H4C110.4C24—C23—H23117.3
N1—C4—H4C110.4C29—C24—C25118.1 (2)
C3—C4—H4C78.1C29—C24—C23119.8 (2)
H4A—C4—H4C133.5C25—C24—C23122.09 (18)
C3A—C4—H4D110.4C26—C25—C24121.7 (2)
N1—C4—H4D110.4C26—C25—H25119.2
C3—C4—H4D138.0C24—C25—H25119.2
H4B—C4—H4D76.8C27—C26—C25117.6 (3)
H4C—C4—H4D108.6C27—C26—H26121.2
N1—C5—C14119.15 (14)C25—C26—H26121.2
N1—C5—C20110.39 (14)C28—C27—F2118.8 (3)
C14—C5—C20101.45 (13)C28—C27—C26123.1 (2)
N1—C5—C6102.58 (13)F2—C27—C26118.0 (3)
C14—C5—C6113.29 (14)C27—C28—C29118.7 (2)
C20—C5—C6110.04 (13)C27—C28—H28120.6
C21—C6—C7116.33 (14)C29—C28—H28120.6
C21—C6—C5113.42 (13)C28—C29—C24120.8 (3)
C7—C6—C5102.51 (12)C28—C29—H29119.6
C21—C6—H6108.1C24—C29—H29119.6
C7—C6—H6108.1C5—N1—C4119.79 (16)
C5—C6—H6108.1C5—N1—C1110.37 (13)
C8—C7—C6116.02 (13)C4—N1—C1108.80 (14)
C8—C7—C1114.92 (14)C20—N2—C19111.77 (14)
C6—C7—C1100.91 (13)C20—N2—H2124.1
C8—C7—H7108.2C19—N2—H2124.1
C6—C7—H7108.2
N1—C1—C2—C322.5 (3)C16—C17—C18—C190.3 (4)
C7—C1—C2—C394.0 (3)C17—C18—C19—C141.0 (3)
N1—C1—C2—C3A13.1 (8)C17—C18—C19—N2179.4 (2)
C7—C1—C2—C3A129.6 (8)C15—C14—C19—C181.0 (3)
C1—C2—C3—C432.4 (4)C5—C14—C19—C18175.96 (19)
C3A—C2—C3—C456.1 (6)C15—C14—C19—N2179.63 (17)
C3—C2—C3A—C473.3 (11)C5—C14—C19—N22.7 (2)
C1—C2—C3A—C426.9 (14)N1—C5—C20—O255.5 (2)
C2—C3A—C4—N129.4 (14)C14—C5—C20—O2177.23 (17)
C2—C3A—C4—C363.4 (10)C6—C5—C20—O257.0 (2)
C2—C3—C4—C3A67.1 (8)N1—C5—C20—N2126.72 (15)
C2—C3—C4—N130.7 (4)C14—C5—C20—N20.55 (17)
N1—C5—C6—C21162.29 (13)C6—C5—C20—N2120.77 (15)
C14—C5—C6—C2132.54 (19)C7—C6—C21—O17.2 (2)
C20—C5—C6—C2180.24 (17)C5—C6—C21—O1111.39 (18)
N1—C5—C6—C736.04 (15)C7—C6—C21—C22174.40 (14)
C14—C5—C6—C793.71 (15)C5—C6—C21—C2267.06 (18)
C20—C5—C6—C7153.52 (14)O1—C21—C22—C2313.3 (3)
C21—C6—C7—C868.07 (19)C6—C21—C22—C23165.08 (17)
C5—C6—C7—C8167.58 (14)C21—C22—C23—C24171.84 (17)
C21—C6—C7—C1167.06 (14)C22—C23—C24—C29168.2 (2)
C5—C6—C7—C142.72 (16)C22—C23—C24—C2515.0 (3)
N1—C1—C7—C8159.55 (14)C29—C24—C25—C260.2 (3)
C2—C1—C7—C883.6 (2)C23—C24—C25—C26177.1 (2)
N1—C1—C7—C633.95 (16)C24—C25—C26—C271.4 (4)
C2—C1—C7—C6150.76 (17)C25—C26—C27—C281.8 (4)
C6—C7—C8—C13128.54 (17)C25—C26—C27—F2179.9 (2)
C1—C7—C8—C13114.13 (18)F2—C27—C28—C29178.6 (2)
C6—C7—C8—C952.7 (2)C26—C27—C28—C290.6 (5)
C1—C7—C8—C964.7 (2)C27—C28—C29—C241.1 (4)
C13—C8—C9—C100.2 (3)C25—C24—C29—C281.4 (4)
C7—C8—C9—C10179.01 (17)C23—C24—C29—C28178.5 (2)
C8—C9—C10—C110.0 (3)C14—C5—N1—C416.4 (2)
C9—C10—C11—F1179.59 (18)C20—C5—N1—C4100.36 (18)
C9—C10—C11—C120.4 (3)C6—C5—N1—C4142.41 (15)
F1—C11—C12—C13179.42 (19)C14—C5—N1—C1111.12 (16)
C10—C11—C12—C130.6 (3)C20—C5—N1—C1132.15 (15)
C11—C12—C13—C80.3 (3)C6—C5—N1—C114.92 (17)
C9—C8—C13—C120.0 (3)C3A—C4—N1—C5148.7 (10)
C7—C8—C13—C12178.86 (17)C3—C4—N1—C5111.4 (3)
N1—C5—C14—C1561.0 (3)C3A—C4—N1—C120.5 (10)
C20—C5—C14—C15177.7 (2)C3—C4—N1—C116.8 (3)
C6—C5—C14—C1559.8 (3)C2—C1—N1—C5136.26 (17)
N1—C5—C14—C19122.63 (16)C7—C1—N1—C511.79 (18)
C20—C5—C14—C191.30 (18)C2—C1—N1—C42.9 (2)
C6—C5—C14—C19116.59 (16)C7—C1—N1—C4121.54 (17)
C19—C14—C15—C160.3 (3)O2—C20—N2—C19175.54 (17)
C5—C14—C15—C16176.3 (2)C5—C20—N2—C192.2 (2)
C14—C15—C16—C171.5 (4)C18—C19—N2—C20175.4 (2)
C15—C16—C17—C181.5 (4)C14—C19—N2—C203.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.092.922 (2)164
C9—H9···F2ii0.932.553.165 (3)124
C28—H28···Cg1iii0.932.973.886 (3)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC29H24F2N2O2
Mr470.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3985 (4), 12.0018 (6), 12.5628 (6)
α, β, γ (°)96.464 (2), 104.348 (2), 104.144 (2)
V3)1169.23 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker KappaAPEXII
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
25777, 6118, 4000
Rint0.032
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.168, 1.05
No. of reflections6118
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.092.922 (2)164
C9—H9···F2ii0.932.553.165 (3)124
C28—H28···Cg1iii0.932.973.886 (3)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions, and the management of SRM, India, for their support.

References

First citationAtal, C. K. (1978). Lloydia, 41, 312–326.  CAS PubMed Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordel, G. (1981). Introduction to Alkaloids, A Biogenetic Approach. New York: Wiley International.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDenny, W. A. (2001). Curr. Med. Chem. 8, 533–544.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353–363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationRamesh, P., Murugavel, S., SubbiahPandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4106–o4107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1774-o1775
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds