metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(1,10-phenanthroline)zinc(II) 3,6-di­carb­oxy­bi­cyclo­[2.2.2]oct-7-ene-2,5-di­carboxyl­ate

aDepartment of Chemistry, College of Chemistry and Biology, Beihua University, Jilin City 132013, People's Republic of China
*Correspondence e-mail: jlschy@126.com

(Received 7 August 2008; accepted 8 August 2008; online 13 August 2008)

In the title compound, [Zn(C12H8N2)(H2O)4](C12H10O8), each ZnII atom is six-coordinated by two N atoms from one phenanthroline mol­ecule and by four O atoms from four water mol­ecules in a distorted octa­hedral environment. In the crystal structure, ions are linked by O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Ma et al. (2003[Ma, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.]); Hu (2008[Hu, T. (2008). Acta Cryst. E64, o1021.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H8N2)(H2O)4](C12H10O8)

  • Mr = 599.84

  • Monoclinic, P 21 /c

  • a = 7.4550 (2) Å

  • b = 13.5991 (4) Å

  • c = 22.9833 (7) Å

  • β = 91.555 (1)°

  • V = 2329.22 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 293 (2) K

  • 0.33 × 0.22 × 0.19 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SAINT; Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.687, Tmax = 0.805

  • 14301 measured reflections

  • 5626 independent reflections

  • 3854 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 0.96

  • 5626 reflections

  • 382 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O8i 0.82 1.88 2.674 (3) 163
O6—H6A⋯O2ii 0.82 1.84 2.583 (3) 151
O2W—HW22⋯O2iii 0.799 (17) 2.06 (2) 2.818 (3) 158 (4)
O4W—HW41⋯O1 0.845 (18) 1.86 (2) 2.705 (3) 174 (4)
O2W—HW21⋯O8iv 0.809 (17) 2.121 (18) 2.904 (3) 163 (4)
O4W—HW42⋯O7iv 0.811 (17) 1.876 (17) 2.686 (3) 177 (3)
O1W—HW12⋯O7v 0.816 (17) 2.09 (2) 2.884 (3) 165 (3)
O1W—HW11⋯O2vi 0.826 (18) 2.13 (2) 2.923 (3) 160 (4)
O3W—HW31⋯O2vi 0.80 (4) 2.57 (4) 3.233 (4) 142 (5)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, complexes with poly(carboxylic acids) have been investigated in the area of solid state and material science (Ma et al., 2003). I selected bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid (H4L) as a poly(carboxylic acid) ligand and phenanthroline (phen) as a secondary ligand, generating a new complex, [Zn(phen)(H2O)4].[H2L], which is reported here.

In the title compound, [Zn(phen)(H2O)4].[H2L], each ZnII atom is six-coordinated by two N atoms from one phen molecule, and four O atoms from four water molecules in a distorted octahedral environment. Each H2L2- acts as a counter-anion. In the crystal, the molecules are linked by O—H···O hydrogen bonds.

Related literature top

For related literature, see: Ma et al. (2003); Hu (2008).

Experimental top

A mixture of H4L (0.5 mmol), phen (0.5 mmol), NaOH (1 mmol) and ZnCl2.6H2O (0.5 mmol) was suspended in 12 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 140°C for one week, the autoclave was slowly cooled to room temperature. The crystals were collected, washed with deionized water and dried.

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.85±0.01 Å; their displacement parameters were set to 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Tetraaqua(1,10-phenanthroline)zinc(II) 3,6-dicarboxybicyclo[2.2.2]oct-7-ene-2,5-dicarboxylate top
Crystal data top
[Zn(C12H8N2)(H2O)4](C12H10O8)F(000) = 1240
Mr = 599.84Dx = 1.711 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5626 reflections
a = 7.4550 (2) Åθ = 1.1–28.3°
b = 13.5991 (4) ŵ = 1.13 mm1
c = 22.9833 (7) ÅT = 293 K
β = 91.555 (1)°Block, colorless
V = 2329.22 (12) Å30.33 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
5626 independent reflections
Radiation source: fine-focus sealed tube3854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SAINT; Bruker, 1998)
h = 98
Tmin = 0.687, Tmax = 0.805k = 1418
14301 measured reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
5626 reflections(Δ/σ)max < 0.001
382 parametersΔρmax = 0.50 e Å3
12 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Zn(C12H8N2)(H2O)4](C12H10O8)V = 2329.22 (12) Å3
Mr = 599.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4550 (2) ŵ = 1.13 mm1
b = 13.5991 (4) ÅT = 293 K
c = 22.9833 (7) Å0.33 × 0.22 × 0.19 mm
β = 91.555 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5626 independent reflections
Absorption correction: multi-scan
(SAINT; Bruker, 1998)
3854 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.805Rint = 0.048
14301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04612 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.50 e Å3
5626 reflectionsΔρmin = 0.59 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2556 (4)0.2855 (2)0.61401 (12)0.0348 (7)
H10.25290.22640.63440.042*
C20.2659 (4)0.3745 (3)0.64532 (13)0.0414 (8)
H20.27080.37340.68570.050*
C40.2686 (5)0.4609 (3)0.61680 (15)0.0459 (9)
H40.27560.51940.63760.055*
C50.2610 (5)0.4632 (2)0.55588 (14)0.0399 (8)
C60.2629 (6)0.5510 (2)0.52184 (18)0.0570 (10)
H60.26280.61170.54050.068*
C70.2648 (6)0.5479 (2)0.46388 (18)0.0554 (10)
H70.26920.60640.44300.067*
C80.2603 (5)0.4564 (2)0.43289 (15)0.0385 (8)
C90.2666 (4)0.4472 (2)0.37212 (14)0.0409 (8)
H90.27270.50320.34890.049*
C100.2639 (4)0.3579 (2)0.34720 (13)0.0377 (8)
H100.26940.35230.30690.045*
C110.2527 (4)0.2731 (2)0.38191 (12)0.0307 (7)
H110.25020.21180.36410.037*
C120.2538 (4)0.3703 (2)0.52783 (12)0.0272 (6)
C130.2518 (4)0.3674 (2)0.46512 (12)0.0271 (6)
C140.1068 (4)0.06219 (19)0.70078 (12)0.0268 (6)
C150.2475 (4)0.12469 (19)0.73318 (11)0.0220 (6)
H150.32950.08080.75480.026*
C160.3605 (4)0.19231 (18)0.69329 (10)0.0206 (5)
H160.48690.17840.70270.025*
C170.3320 (4)0.1720 (2)0.62817 (11)0.0252 (6)
C180.3279 (3)0.30060 (18)0.70964 (10)0.0187 (5)
H180.38940.34450.68290.022*
C190.1500 (4)0.19201 (18)0.77770 (11)0.0209 (5)
H190.07440.15240.80290.025*
C200.0380 (4)0.26442 (19)0.74361 (11)0.0243 (6)
H200.08570.26920.74690.029*
C0210.2081 (4)0.3018 (2)0.86562 (11)0.0234 (6)
C210.1303 (4)0.32112 (19)0.70833 (11)0.0245 (6)
H210.07730.36930.68490.029*
C220.4016 (4)0.31473 (18)0.77246 (11)0.0211 (5)
H220.52460.28920.77320.025*
C230.4151 (4)0.4227 (2)0.79029 (11)0.0262 (6)
C250.2936 (4)0.24790 (18)0.81443 (10)0.0216 (6)
H250.37710.19900.83090.026*
N10.2458 (3)0.27831 (16)0.43985 (9)0.0246 (5)
N20.2495 (3)0.28378 (17)0.55612 (9)0.0255 (5)
O10.2699 (3)0.23710 (15)0.59560 (8)0.0417 (6)
O20.3860 (3)0.08866 (14)0.60983 (8)0.0348 (5)
O1W0.4920 (3)0.13197 (19)0.49279 (10)0.0375 (5)
O30.1019 (3)0.02720 (15)0.72076 (9)0.0469 (6)
H30.02550.05870.70240.070*
O2W0.1668 (4)0.06205 (18)0.43708 (11)0.0422 (6)
O40.0122 (3)0.09170 (16)0.66157 (10)0.0473 (6)
O3W0.2116 (4)0.0585 (2)0.56396 (12)0.0490 (6)
O50.3699 (3)0.49114 (14)0.76039 (9)0.0399 (5)
O4W0.0517 (3)0.17941 (19)0.50606 (9)0.0401 (6)
O60.4927 (3)0.42964 (15)0.84189 (8)0.0374 (5)
H6A0.49950.48770.85140.056*
O70.2531 (3)0.27139 (14)0.91541 (8)0.0336 (5)
O80.0968 (3)0.36877 (15)0.85579 (8)0.0371 (5)
Zn10.22063 (5)0.16487 (2)0.499735 (13)0.02916 (12)
HW220.223 (4)0.013 (2)0.4325 (16)0.063 (13)*
HW410.113 (5)0.198 (3)0.5355 (10)0.095*
HW210.092 (4)0.069 (3)0.4124 (14)0.074 (15)*
HW420.109 (4)0.195 (2)0.4781 (9)0.037 (10)*
HW120.551 (4)0.168 (2)0.4714 (11)0.043 (11)*
HW110.551 (5)0.118 (3)0.5214 (12)0.079 (15)*
HW310.282 (6)0.057 (3)0.5893 (17)0.119*
HW320.195 (6)0.009 (2)0.5475 (17)0.083 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (17)0.049 (2)0.0242 (14)0.0001 (14)0.0003 (12)0.0013 (14)
C20.0318 (18)0.067 (2)0.0255 (15)0.0106 (16)0.0019 (13)0.0162 (16)
C40.043 (2)0.049 (2)0.0447 (19)0.0084 (16)0.0065 (16)0.0268 (17)
C50.045 (2)0.0296 (17)0.0447 (19)0.0040 (14)0.0066 (15)0.0126 (15)
C60.079 (3)0.0198 (17)0.072 (3)0.0021 (16)0.007 (2)0.0094 (18)
C70.074 (3)0.0221 (18)0.070 (3)0.0012 (17)0.004 (2)0.0069 (17)
C80.044 (2)0.0230 (16)0.0478 (19)0.0010 (13)0.0031 (15)0.0094 (14)
C90.041 (2)0.0408 (19)0.0404 (18)0.0060 (15)0.0033 (15)0.0234 (15)
C100.0336 (18)0.054 (2)0.0251 (15)0.0009 (14)0.0010 (13)0.0107 (15)
C110.0318 (16)0.0369 (17)0.0235 (14)0.0024 (13)0.0001 (12)0.0001 (13)
C120.0309 (16)0.0223 (14)0.0283 (15)0.0003 (11)0.0022 (12)0.0038 (12)
C130.0319 (16)0.0208 (14)0.0283 (14)0.0005 (11)0.0027 (12)0.0022 (12)
C140.0353 (17)0.0180 (14)0.0273 (14)0.0034 (11)0.0054 (13)0.0008 (11)
C150.0283 (15)0.0176 (13)0.0201 (13)0.0006 (10)0.0004 (11)0.0004 (10)
C160.0236 (14)0.0201 (13)0.0180 (12)0.0012 (10)0.0012 (11)0.0023 (10)
C170.0331 (16)0.0264 (15)0.0161 (12)0.0042 (12)0.0006 (11)0.0004 (11)
C180.0241 (14)0.0152 (12)0.0167 (12)0.0037 (10)0.0017 (10)0.0019 (10)
C190.0234 (14)0.0178 (13)0.0218 (13)0.0028 (10)0.0054 (11)0.0012 (10)
C200.0220 (14)0.0252 (14)0.0255 (14)0.0014 (11)0.0029 (11)0.0002 (11)
C0210.0296 (15)0.0219 (14)0.0188 (13)0.0019 (11)0.0028 (11)0.0009 (11)
C210.0279 (15)0.0220 (14)0.0233 (13)0.0030 (11)0.0051 (11)0.0010 (11)
C220.0233 (14)0.0196 (13)0.0203 (13)0.0002 (10)0.0001 (11)0.0007 (10)
C230.0341 (16)0.0241 (15)0.0204 (13)0.0099 (12)0.0031 (12)0.0014 (11)
C250.0248 (14)0.0187 (13)0.0213 (13)0.0027 (10)0.0006 (11)0.0001 (11)
N10.0286 (13)0.0241 (12)0.0212 (11)0.0011 (10)0.0006 (9)0.0011 (10)
N20.0282 (13)0.0278 (13)0.0203 (11)0.0000 (10)0.0019 (9)0.0015 (10)
O10.0729 (17)0.0249 (11)0.0264 (10)0.0026 (10)0.0152 (11)0.0063 (9)
O20.0529 (14)0.0266 (11)0.0248 (10)0.0048 (9)0.0025 (10)0.0068 (9)
O1W0.0282 (12)0.0574 (16)0.0270 (12)0.0047 (11)0.0014 (10)0.0052 (11)
O30.0640 (17)0.0305 (12)0.0454 (13)0.0204 (11)0.0111 (12)0.0083 (10)
O2W0.0487 (16)0.0325 (14)0.0457 (14)0.0005 (11)0.0034 (12)0.0171 (11)
O40.0527 (15)0.0370 (13)0.0507 (14)0.0078 (11)0.0267 (12)0.0000 (11)
O3W0.0611 (18)0.0372 (15)0.0482 (15)0.0090 (12)0.0082 (13)0.0157 (13)
O50.0610 (16)0.0250 (11)0.0330 (11)0.0052 (10)0.0117 (10)0.0037 (9)
O4W0.0259 (12)0.0736 (18)0.0208 (10)0.0078 (11)0.0007 (9)0.0006 (11)
O60.0551 (15)0.0235 (11)0.0328 (11)0.0068 (9)0.0142 (10)0.0010 (9)
O70.0495 (14)0.0329 (12)0.0184 (9)0.0085 (10)0.0031 (9)0.0025 (8)
O80.0507 (14)0.0341 (12)0.0267 (11)0.0174 (10)0.0063 (10)0.0014 (9)
Zn10.0328 (2)0.0265 (2)0.0280 (2)0.00085 (14)0.00117 (14)0.00085 (14)
Geometric parameters (Å, º) top
C1—N21.333 (3)C18—C211.499 (4)
C1—C21.410 (4)C18—C221.543 (3)
C1—H10.9300C18—H180.9800
C2—C41.346 (5)C19—C201.498 (4)
C2—H20.9300C19—C251.545 (4)
C4—C51.403 (5)C19—H190.9800
C4—H40.9300C20—C211.325 (4)
C5—C121.420 (4)C20—H200.9300
C5—C61.428 (5)C021—O81.248 (3)
C6—C71.333 (6)C021—O71.254 (3)
C6—H60.9300C021—C251.539 (3)
C7—C81.434 (5)C21—H210.9300
C7—H70.9300C22—C231.526 (3)
C8—C91.402 (4)C22—C251.564 (3)
C8—C131.419 (4)C22—H220.9800
C9—C101.343 (4)C23—O51.200 (3)
C9—H90.9300C23—O61.309 (3)
C10—C111.403 (4)C25—H250.9800
C10—H100.9300N1—Zn12.073 (2)
C11—N11.333 (3)N2—Zn12.087 (2)
C11—H110.9300O1W—Zn12.074 (2)
C12—N21.344 (3)O1W—HW120.816 (17)
C12—C131.442 (4)O1W—HW110.826 (18)
C13—N11.345 (3)O3—H30.8200
C14—O41.198 (3)O2W—Zn12.055 (2)
C14—O31.300 (3)O2W—HW220.799 (17)
C14—C151.528 (4)O2W—HW210.809 (17)
C15—C161.561 (3)O3W—Zn12.067 (2)
C15—C191.567 (3)O3W—HW310.80 (4)
C15—H150.9800O3W—HW320.784 (18)
C16—C171.531 (3)O4W—Zn12.041 (2)
C16—C181.541 (3)O4W—HW410.845 (18)
C16—H160.9800O4W—HW420.811 (17)
C17—O11.240 (3)O6—H6A0.8200
C17—O21.279 (3)
N2—C1—C2121.9 (3)C20—C19—H19110.4
N2—C1—H1119.1C25—C19—H19110.4
C2—C1—H1119.1C15—C19—H19110.4
C4—C2—C1120.0 (3)C21—C20—C19114.3 (2)
C4—C2—H2120.0C21—C20—H20122.9
C1—C2—H2120.0C19—C20—H20122.9
C2—C4—C5120.3 (3)O8—C021—O7124.5 (2)
C2—C4—H4119.8O8—C021—C25119.8 (2)
C5—C4—H4119.8O7—C021—C25115.7 (2)
C4—C5—C12115.9 (3)C20—C21—C18113.9 (2)
C4—C5—C6124.4 (3)C20—C21—H21123.0
C12—C5—C6119.7 (3)C18—C21—H21123.0
C7—C6—C5121.4 (3)C23—C22—C18113.0 (2)
C7—C6—H6119.3C23—C22—C25115.1 (2)
C5—C6—H6119.3C18—C22—C25109.2 (2)
C6—C7—C8121.7 (3)C23—C22—H22106.3
C6—C7—H7119.2C18—C22—H22106.3
C8—C7—H7119.2C25—C22—H22106.3
C9—C8—C13116.4 (3)O5—C23—O6124.9 (3)
C9—C8—C7124.9 (3)O5—C23—C22125.2 (2)
C13—C8—C7118.8 (3)O6—C23—C22109.7 (2)
C10—C9—C8120.3 (3)C021—C25—C19110.9 (2)
C10—C9—H9119.8C021—C25—C22115.2 (2)
C8—C9—H9119.8C19—C25—C22108.0 (2)
C9—C10—C11120.1 (3)C021—C25—H25107.5
C9—C10—H10119.9C19—C25—H25107.5
C11—C10—H10119.9C22—C25—H25107.5
N1—C11—C10121.6 (3)C11—N1—C13118.6 (2)
N1—C11—H11119.2C11—N1—Zn1128.64 (19)
C10—C11—H11119.2C13—N1—Zn1112.79 (17)
N2—C12—C5124.0 (3)C1—N2—C12117.8 (3)
N2—C12—C13117.4 (2)C1—N2—Zn1129.8 (2)
C5—C12—C13118.6 (3)C12—N2—Zn1112.28 (17)
N1—C13—C8123.0 (3)Zn1—O1W—HW12115 (2)
N1—C13—C12117.2 (2)Zn1—O1W—HW11122 (3)
C8—C13—C12119.8 (3)HW12—O1W—HW11109 (3)
O4—C14—O3123.8 (3)C14—O3—H3109.5
O4—C14—C15124.2 (2)Zn1—O2W—HW22124 (3)
O3—C14—C15111.9 (2)Zn1—O2W—HW21124 (3)
C14—C15—C16114.5 (2)HW22—O2W—HW21112 (3)
C14—C15—C19108.6 (2)Zn1—O3W—HW31122 (4)
C16—C15—C19107.85 (19)Zn1—O3W—HW32105 (3)
C14—C15—H15108.6HW31—O3W—HW32117 (3)
C16—C15—H15108.6Zn1—O4W—HW41127 (3)
C19—C15—H15108.6Zn1—O4W—HW42121 (2)
C17—C16—C18113.1 (2)HW41—O4W—HW42106 (3)
C17—C16—C15113.9 (2)C23—O6—H6A109.5
C18—C16—C15109.2 (2)O4W—Zn1—O2W84.42 (10)
C17—C16—H16106.7O4W—Zn1—O3W90.23 (10)
C18—C16—H16106.7O2W—Zn1—O3W91.20 (12)
C15—C16—H16106.7O4W—Zn1—N192.69 (9)
O1—C17—O2123.3 (2)O2W—Zn1—N193.26 (10)
O1—C17—C16120.1 (2)O3W—Zn1—N1174.89 (11)
O2—C17—C16116.4 (2)O4W—Zn1—O1W173.09 (10)
C21—C18—C16109.5 (2)O2W—Zn1—O1W90.46 (10)
C21—C18—C22108.7 (2)O3W—Zn1—O1W85.22 (10)
C16—C18—C22107.0 (2)N1—Zn1—O1W92.24 (9)
C21—C18—H18110.5O4W—Zn1—N290.00 (9)
C16—C18—H18110.5O2W—Zn1—N2171.08 (10)
C22—C18—H18110.5O3W—Zn1—N295.79 (11)
C20—C19—C25109.3 (2)N1—Zn1—N280.02 (9)
C20—C19—C15107.7 (2)O1W—Zn1—N295.62 (9)
C25—C19—C15108.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O8i0.821.882.674 (3)163
O6—H6A···O2ii0.821.842.583 (3)151
O2W—HW22···O2iii0.80 (2)2.06 (2)2.818 (3)158 (4)
O4W—HW41···O10.85 (2)1.86 (2)2.705 (3)174 (4)
O2W—HW21···O8iv0.81 (2)2.12 (2)2.904 (3)163 (4)
O4W—HW42···O7iv0.81 (2)1.88 (2)2.686 (3)177 (3)
O1W—HW12···O7v0.82 (2)2.09 (2)2.884 (3)165 (3)
O1W—HW11···O2vi0.83 (2)2.13 (2)2.923 (3)160 (4)
O3W—HW31···O2vi0.80 (4)2.57 (4)3.233 (4)142 (5)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y, z+1; (iv) x, y+1/2, z1/2; (v) x1, y+1/2, z1/2; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C12H8N2)(H2O)4](C12H10O8)
Mr599.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.4550 (2), 13.5991 (4), 22.9833 (7)
β (°) 91.555 (1)
V3)2329.22 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.33 × 0.22 × 0.19
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SAINT; Bruker, 1998)
Tmin, Tmax0.687, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
14301, 5626, 3854
Rint0.048
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 0.96
No. of reflections5626
No. of parameters382
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.59

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O8i0.821.882.674 (3)163.2
O6—H6A···O2ii0.821.842.583 (3)150.9
O2W—HW22···O2iii0.799 (17)2.06 (2)2.818 (3)158 (4)
O4W—HW41···O10.845 (18)1.86 (2)2.705 (3)174 (4)
O2W—HW21···O8iv0.809 (17)2.121 (18)2.904 (3)163 (4)
O4W—HW42···O7iv0.811 (17)1.876 (17)2.686 (3)177 (3)
O1W—HW12···O7v0.816 (17)2.09 (2)2.884 (3)165 (3)
O1W—HW11···O2vi0.826 (18)2.13 (2)2.923 (3)160 (4)
O3W—HW31···O2vi0.80 (4)2.57 (4)3.233 (4)142 (5)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y, z+1; (iv) x, y+1/2, z1/2; (v) x1, y+1/2, z1/2; (vi) x1, y, z.
 

Acknowledgements

The authors thank Beihua University for supporting this work.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, T. (2008). Acta Cryst. E64, o1021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds