organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3S,4S,5S)-4-Hydr­­oxy-3-methyl-5-[(2S,3R)-3-methyl­pent-4-en-2-yl]-4,5-di­hydro­furan-2(3H)-one

aFakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@udo.edu

(Received 11 August 2008; accepted 21 August 2008; online 30 August 2008)

The title compound, C11H18O3, was synthesized to prove the relative configuration of the corresponding acyclic C1—C8 stereopentade. Mol­ecules are linked via O—H⋯O hydrogen bonds, forming a chain along the b axis.

Related literature

For related literature, see: Abraham et al. (2004a[Abraham, L., Körner, M., Schwab, P. & Hiersemann, M. (2004a). Adv. Synth. Catal. 346, 1281-1294.],b[Abraham, L., Körner, M. & Hiersemann, M. (2004b). Tetrahedron Lett. 45, 3647-3650.]); Corey & Snider (1972[Corey, E. J. & Snider, B. B. (1972). J. Am. Chem. Soc. 94, 2549-2550.]); Evans et al. (1981[Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127-2129.], 1999[Evans, D. A., Miller, S. J., Lectka, T. & von Matt, P. (1999). J. Am. Chem. Soc. 121, 7559-7573.]); Körner & Hiersemann (2006[Körner, M. & Hiersemann, M. (2006). Synlett, pp. 121-123.], 2007[Körner, M. & Hiersemann, M. (2007). Org. Lett. 9, 4979-4982.]); Pollex & Hiersemann (2005[Pollex, A. & Hiersemann, M. (2005). Org. Lett. 7, 5705-5708.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18O3

  • Mr = 198.25

  • Orthorhombic, P 21 21 21

  • a = 5.4414 (14) Å

  • b = 10.132 (2) Å

  • c = 20.975 (8) Å

  • V = 1156.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 (1) K

  • 0.36 × 0.06 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 7554 measured reflections

  • 1223 independent reflections

  • 346 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 0.97

  • 1223 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 2.02 2.798 (6) 158
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326, New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), was synthesized using a catalytic asymmetric Claisen rearrangement (Abraham et al., 2004a; Abraham et al., 2004b; Pollex & Hiersemann, 2005; Körner & Hiersemann, 2006; Körner & Hiersemann, 2007), a diastereoselective reduction with K-Selectride (Körner & Hiersemann, 2006; Körner & Hiersemann, 2007), and an Evans aldol addition (Evans et al., 1981). In order to verify the relative configuration of the obtained aldol adduct, 4-(tert-butyldimethylsilyloxy)-3-hydroxy-2,5,6-trimethyloct-7-enoyl)-4-isopropyloxazolidin-2-one, (II), a γ-lactone, (I), was prepared by removal of the silyl protecting group (Corey & Snider, 1972) and subsequent in situ lactonization. Fig. 1 depicts the structure of the isolated major diastereomer (I). The configuration of the chiral C atoms in (I) can be attributed to the stereochemical course of the Evans aldol addition (C3 S and C4 S), the diastereoselective reduction with K-Selectride (C5 S), and the catalytic asymmetric Claisen rearrangement (C(2) S and C(3) R) using the chiral Lewis acid [Cu{(S,S)-tert-Butyl-box}](H2O)2(SbF6)2 (Evans et al., 1999).

Related literature top

For related literature, see: Abraham et al. (2004a,b); Corey & Snider (1972); Evans et al. (1981, 1999); Körner & Hiersemann (2006, 2007); Pollex & Hiersemann (2005).

Experimental top

The title compound, (I), was synthesized from the corresponding syn-aldol adduct, (II), using tetrabutylammonium fluoride (Corey & Snider, 1972) for the removal of the silyl protecting group. The subsequent lactonization proceeded in situ.

To a solution of diastereomerically pure (II) (50 mg, 0.113 mmol, 1.0 eq) in dry tetrahydrofuran (1 ml) was added TBAF (1 M in tetrahydrofuran, 0.34 ml, 3.0 eq) at 273 K. The mixture was stirred at 273 K for 25 min. The reaction was then quenched by the addition of sat. aqueous NaHCO3 solution. The phases were separated, and the aqueous phase was extracted with CH2Cl2. The combined organic layers were dried over MgSO4 and concentrated under reduced pressure. Flash chromatography (isohexane/ethyl acetate 20/1 to 10/1) afforded (I) as a single diastereomer and additionally a mixture of (I) and the minor diastereomer with an overall yield of 96% (21.4 mg, 0.108 mmol) as colourless crystals. Single crystals of (I) were obtained by vapor diffusion recrystallization technique from isohexane and ethyl acetate to yield colourless needles: mp 374 K; Rf 0.28 (cyclohexane/ethyl acetate 2/1); 1H NMR (CDCl3, 400 MHz, δ): 0.83 (d, J = 7.0 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 1.30 (d, J = 7.8 Hz, 3H), 2.21 (dqd, J = 10.7, 7.0, 3.3 Hz, 1H), 2.64 (q, J = 7.8 Hz, 1H) overlapped by 2.61 - 2.76 (m, 1H), 4.14 (d, J = 3.4 Hz, 1H), 4.23 (dd, J = 10.7, 3.4 Hz, 1H), 5.04 (dd, 3J(Z) = 11.0 Hz, 2J = 1.5 Hz, 1H), 5.05 (dd, 3J(E) = 17.0 Hz, 2J = 1.5 Hz, 1H), 5.84 (ddd, 3J(E) = 17.0 Hz, 3J(Z) = 11.0 Hz, 3J = 6.3 Hz, 1H); 13C NMR (CDCl3, 100 MHz, δ): 9.8 (CH3), 12.5 (CH3), 13.7 (CH3), 35.6 (CH), 37.2 (CH), 46.5 (CH), 75.0 (CH), 83.9 (CH), 114.4 (CH2), 142.7 (CH), 179.1 (C); IR (cm-1): 3520(br,s) (ν O—H, OH in H-bridges), 3085(w) (ν C—H, olefin), 2975(m) 2940(m) 2885(s) 2855(w) (νas,s C—H, CH2, CH3, CH), 1755(s) (ν C=O, lactone), 1640(w) (ν C=C), 1455(m) (δas C—H, CH3, CH2), 1385(m) (δs C—H, CH3); Anal. Calcd. for C11H18O3: C, 66.6; H, 9.2; Found: C, 66.5; H, 9.3; [α]D20 -14.5 (c 0.775, CHCl3).

Refinement top

The H atoms were geometrically placed (C-H = 0.93-0.98, O-H = 0.82 Å) and refined as riding with Uiso(H) = 1.2eq(C, O) or 1.5Ueq(methyl C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 30% probability level.
(3S,4S,5S)-4-Hydroxy-3-methyl-5-[(2S,3R)-3- methylpent-4-en-2-yl]-4,5-dihydrofuran-2(3H)-one top
Crystal data top
C11H18O3F(000) = 432
Mr = 198.25Dx = 1.139 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7554 reflections
a = 5.4414 (14) Åθ = 2.8–25.0°
b = 10.132 (2) ŵ = 0.08 mm1
c = 20.975 (8) ÅT = 291 K
V = 1156.4 (6) Å3Needle, colourless
Z = 40.36 × 0.06 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
346 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.0°, θmin = 2.8°
Detector resolution: 19 vertical, 18 horizontal pixels mm-1h = 66
111 frames via ω–rotation (Δω=2%) and two times 180 s per frame (three sets at different κ–angles) scansk = 1212
7554 measured reflectionsl = 2424
1223 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 0.97 [1.0 exp(5.65(sinθ/λ)2)]/[σ2(Fo2)]
1223 reflections(Δ/σ)max = 0.007
131 parametersΔρmax = 0.09 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C11H18O3V = 1156.4 (6) Å3
Mr = 198.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4414 (14) ŵ = 0.08 mm1
b = 10.132 (2) ÅT = 291 K
c = 20.975 (8) Å0.36 × 0.06 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
346 reflections with I > 2σ(I)
7554 measured reflectionsRint = 0.048
1223 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 0.97Δρmax = 0.09 e Å3
1223 reflectionsΔρmin = 0.13 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1778 (7)0.0092 (4)0.3153 (2)0.0647 (11)
O20.4408 (8)0.0462 (4)0.2370 (2)0.0971 (19)
O30.3095 (10)0.2710 (5)0.3391 (2)0.0890 (15)
H30.40900.30800.31580.133*
C10.2948 (12)0.0261 (7)0.2615 (3)0.075 (2)
C20.2076 (11)0.1595 (6)0.2396 (3)0.0641 (19)
H2A0.34490.21140.22270.077*
C30.1142 (11)0.2191 (6)0.3017 (3)0.0635 (19)
H3B0.01470.28490.29420.076*
C40.0156 (11)0.0982 (5)0.3372 (3)0.0596 (18)
H4A0.15220.08030.32270.072*
C50.0176 (10)0.1020 (6)0.4090 (3)0.0578 (17)
H5A0.18540.12350.42250.069*
C60.0502 (11)0.0338 (6)0.4390 (3)0.069 (2)
H6A0.06270.09860.42050.082*
C70.0064 (15)0.0286 (7)0.5094 (4)0.107 (3)
H7A0.15910.00700.51930.129*
C80.1131 (18)0.0629 (9)0.5549 (4)0.170 (4)
H8A0.26810.09960.54910.205*
H8B0.05010.05270.59580.205*
C90.0066 (12)0.1412 (5)0.1883 (3)0.093 (2)
H9A0.04910.22610.17400.140*
H9B0.12910.09320.20620.140*
H9C0.07310.09290.15290.140*
C100.1534 (11)0.2165 (5)0.4322 (3)0.085 (2)
H10A0.08210.29980.42070.128*
H10B0.17120.21190.47770.128*
H10C0.31180.20790.41250.128*
C110.3096 (12)0.0798 (6)0.4222 (3)0.102 (3)
H11A0.33760.16570.44010.152*
H11B0.32690.08400.37670.152*
H11C0.42730.01870.43930.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.064 (3)0.056 (3)0.074 (3)0.002 (3)0.011 (3)0.006 (2)
O20.091 (4)0.110 (4)0.091 (4)0.027 (3)0.026 (3)0.012 (3)
O30.105 (4)0.080 (3)0.083 (3)0.034 (3)0.005 (3)0.002 (3)
C10.062 (6)0.083 (6)0.081 (6)0.010 (5)0.004 (5)0.010 (5)
C20.073 (5)0.065 (5)0.054 (5)0.008 (4)0.013 (4)0.009 (3)
C30.072 (5)0.048 (4)0.071 (5)0.000 (4)0.009 (4)0.005 (4)
C40.053 (5)0.056 (4)0.070 (5)0.000 (4)0.002 (4)0.006 (4)
C50.039 (4)0.068 (4)0.066 (5)0.001 (4)0.002 (4)0.008 (4)
C60.072 (6)0.073 (4)0.061 (5)0.005 (4)0.013 (4)0.009 (4)
C70.133 (7)0.106 (6)0.082 (7)0.050 (6)0.028 (6)0.007 (5)
C80.233 (13)0.159 (9)0.119 (10)0.006 (8)0.019 (9)0.019 (7)
C90.119 (7)0.089 (5)0.071 (6)0.002 (5)0.021 (6)0.004 (4)
C100.094 (6)0.078 (5)0.084 (5)0.016 (4)0.015 (5)0.013 (4)
C110.085 (6)0.111 (6)0.109 (6)0.048 (5)0.007 (5)0.021 (4)
Geometric parameters (Å, º) top
O1—C11.344 (6)C6—C71.508 (8)
O1—C41.475 (6)C6—C111.527 (6)
O2—C11.196 (6)C6—H6A0.9800
O3—C31.422 (6)C7—C81.207 (8)
O3—H30.8200C7—H7A0.9300
C1—C21.504 (7)C8—H8A0.9300
C2—C31.523 (7)C8—H8B0.9300
C2—C91.546 (7)C9—H9A0.9600
C2—H2A0.9800C9—H9B0.9600
C3—C41.531 (6)C9—H9C0.9600
C3—H3B0.9800C10—H10A0.9600
C4—C51.506 (6)C10—H10B0.9600
C4—H4A0.9800C10—H10C0.9600
C5—C61.557 (6)C11—H11A0.9600
C5—C101.564 (7)C11—H11B0.9600
C5—H5A0.9800C11—H11C0.9600
C1—O1—C4110.5 (5)C7—C6—C5108.4 (5)
C3—O3—H3109.5C11—C6—C5113.3 (5)
O2—C1—O1120.8 (7)C7—C6—H6A106.5
O2—C1—C2129.0 (7)C11—C6—H6A106.5
O1—C1—C2110.2 (6)C5—C6—H6A106.5
C1—C2—C3101.6 (5)C8—C7—C6130.9 (9)
C1—C2—C9109.1 (5)C8—C7—H7A114.6
C3—C2—C9114.0 (6)C6—C7—H7A114.6
C1—C2—H2A110.6C7—C8—H8A120.0
C3—C2—H2A110.6C7—C8—H8B120.0
C9—C2—H2A110.6H8A—C8—H8B120.0
O3—C3—C2111.7 (5)C2—C9—H9A109.5
O3—C3—C4106.8 (5)C2—C9—H9B109.5
C2—C3—C4102.5 (5)H9A—C9—H9B109.5
O3—C3—H3B111.8C2—C9—H9C109.5
C2—C3—H3B111.8H9A—C9—H9C109.5
C4—C3—H3B111.8H9B—C9—H9C109.5
O1—C4—C5109.1 (5)C5—C10—H10A109.5
O1—C4—C3103.2 (4)C5—C10—H10B109.5
C5—C4—C3117.6 (5)H10A—C10—H10B109.5
O1—C4—H4A108.8C5—C10—H10C109.5
C5—C4—H4A108.8H10A—C10—H10C109.5
C3—C4—H4A108.8H10B—C10—H10C109.5
C4—C5—C6112.3 (5)C6—C11—H11A109.5
C4—C5—C10109.0 (5)C6—C11—H11B109.5
C6—C5—C10112.8 (5)H11A—C11—H11B109.5
C4—C5—H5A107.5C6—C11—H11C109.5
C6—C5—H5A107.5H11A—C11—H11C109.5
C10—C5—H5A107.5H11B—C11—H11C109.5
C7—C6—C11115.1 (5)
C4—O1—C1—O2177.8 (6)C2—C3—C4—O131.7 (6)
C4—O1—C1—C23.8 (7)O3—C3—C4—C534.3 (8)
O2—C1—C2—C3157.8 (7)C2—C3—C4—C5151.8 (5)
O1—C1—C2—C324.0 (7)O1—C4—C5—C654.5 (6)
O2—C1—C2—C981.5 (9)C3—C4—C5—C6171.5 (5)
O1—C1—C2—C996.7 (6)O1—C4—C5—C10179.7 (5)
C1—C2—C3—O380.8 (6)C3—C4—C5—C1062.7 (7)
C9—C2—C3—O3162.0 (5)C4—C5—C6—C7168.6 (6)
C1—C2—C3—C433.2 (6)C10—C5—C6—C767.7 (7)
C9—C2—C3—C484.0 (6)C4—C5—C6—C1162.3 (7)
C1—O1—C4—C5143.8 (5)C10—C5—C6—C1161.4 (7)
C1—O1—C4—C318.0 (6)C11—C6—C7—C85.6 (14)
O3—C3—C4—O185.8 (5)C5—C6—C7—C8133.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.022.798 (6)158
Symmetry code: (i) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H18O3
Mr198.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)5.4414 (14), 10.132 (2), 20.975 (8)
V3)1156.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.06 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7554, 1223, 346
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 0.97
No. of reflections1223
No. of parameters131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.09, 0.13

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.022.798 (6)158.2
Symmetry code: (i) x+1, y1/2, z1/2.
 

References

First citationAbraham, L., Körner, M. & Hiersemann, M. (2004b). Tetrahedron Lett. 45, 3647–3650.  Web of Science CrossRef CAS Google Scholar
First citationAbraham, L., Körner, M., Schwab, P. & Hiersemann, M. (2004a). Adv. Synth. Catal. 346, 1281–1294.  Web of Science CSD CrossRef CAS Google Scholar
First citationCorey, E. J. & Snider, B. B. (1972). J. Am. Chem. Soc. 94, 2549–2550.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEvans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. A., Miller, S. J., Lectka, T. & von Matt, P. (1999). J. Am. Chem. Soc. 121, 7559–7573.  Web of Science CrossRef CAS Google Scholar
First citationKörner, M. & Hiersemann, M. (2006). Synlett, pp. 121–123.  Google Scholar
First citationKörner, M. & Hiersemann, M. (2007). Org. Lett. 9, 4979–4982.  Web of Science PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326, New York: Academic Press.  Google Scholar
First citationPollex, A. & Hiersemann, M. (2005). Org. Lett. 7, 5705–5708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds