organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1832-o1833

Ethyl 1'-[1-(4-methoxyphenyl)-3-phen­oxy-4-phenylazetidin-1-yl]-1,3-dioxo-2′,3′,5′,6′,7′,7a′-hexa­hydroindan-2-spiro-3′-1′H-pyrrolizine-2′-carboxylate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India.
*Correspondence e-mail: sudharose18@gmail.com

(Received 17 August 2008; accepted 20 August 2008; online 30 August 2008)

In the title compound, C34H32N2O7, the methyl group and methylene H atoms of the ethoxycarbonyl substituent are disordered over two positions with site occupancy factors for the major and minor conformers of 0.594 (8) and 0.406 (8), respectively. The unsubstituted ring of the pyrrolizine ring system exhibits a twist conformation, the other an envelope conformation. In the crystal structure, mol­ecules are linked through C—H⋯O hydrogen bonds; intramolecular C—H⋯O interactions are also observed.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Alonso et al. (2002[Alonso, E., Del Pozo, C. & Gonzalez, J. (2002). Synlett, pp. 69-72.]); Aoyama et al. (2001[Aoyama, Y., Uenaka, M., Kii, M., Tanaka, M., Konoike, T., Hayasaki Kajiwara, Y., Naya, N. & Nakajima, M. (2001). Bioorg. Med. Chem. 9, 3065-3075.]); Chande et al. (2005[Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143-1148.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Escolano & Jones (2000[Escolano, C. & Jones, K. (2000). Tetrahedron Lett., 41, 8951-8955.]); Halve et al. (2007[Halve, A. K., Bhadauria, D. & Dubey, R. (2007). Bioorg. Med. Chem. Lett. 17, 341-345.]); Kamala et al. (2008[Kamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716-o717.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Pinna et al. (2002[Pinna, G. A., Pirisi, M. A., Chelucci, G., Mussinu, J. M., Murineddu, G., Loriga, G., D'Aquila, P. S. & Serra, G. (2002). Bioorg. Med. Chem. 10, 2485-2496.]); Poornachandran & Raghunathan (2006[Poornachandran, M. & Raghunathan, R. (2006). Tetrahedron, 62, 11274-11281.]); Raj & Raghunathan (2001[Raj, A. A. & Raghunathan, R. (2001). Tetrahedron, 57, 10293-10298.]); Raj et al. (2003[Raj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]).

[Scheme 1]

Experimental

Crystal data
  • C34H32N2O7

  • Mr = 580.62

  • Monoclinic, P 21 /n

  • a = 12.4776 (7) Å

  • b = 12.4946 (6) Å

  • c = 19.4958 (11) Å

  • β = 106.013 (3)°

  • V = 2921.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.973, Tmax = 0.982

  • 66713 measured reflections

  • 7446 independent reflections

  • 4654 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.225

  • S = 0.92

  • 7446 reflections

  • 395 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O6i 0.98 2.45 3.151 (3) 129
C26—H26⋯O1ii 0.93 2.50 3.390 (4) 160
C8—H8A⋯O6 0.97 2.50 3.166 (4) 126
C10—H10⋯O2 0.98 2.24 2.987 (3) 132
C29—H29⋯O1 0.93 2.40 3.024 (3) 125
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pyrrolidine derivatives are widely used as organic catalysts and also serve as important structural units in biologically active molecules. Pyrrolidine derivatives, apart from displaying important biological activities (Pinna et al., 2002; Escolano & Jones, 2000), are present in natural products such as cephalotoxin, kainic acid, domoic acid and quinocarcin. The cycloaddition of azomethine ylides to dipolarophiles with exocyclic double bonds affords spiro-pyrrolidines (Raj & Raghunathan, 2001; Poornachandran & Raghunathan, 2006), which display important biological activities (Raj et al., 2003). In view of their very good antimycobacterial activity,synthesis of spiro compounds has drawn considerable attention from chemists (Chande et al., 2005). The azetidinone ring system is the common structural feature of a number of broad spectrum β-lactam antibiotics (Halve et al., 2007) and also possesses other pharmalogical properties (Aoyama et al., 2001). They are precursors of α,α-disubstituted β-amino acids (Alonso et al.,2002).

Fig. 1 shows the ORTEP (Farrugia, 1997) plot of compound (I). Bond lengths and angles are comparable with other reported values (Allen et al.,1987; Kamala et al.,2008). The atom C21 is disordered.

In the molecule the five membered rings N2/C5/C4/C10/C9 and C9/C11/C12/C17/C18 exhibit envelope conformation with envelopes on C10 and C9 respectively with the assymetry parameters (Nardelli,1983) ΔCs(C10)/C(9) = 2.3 (2)/1.2 (2) and with the puckering parameters (Cremer and Pople,1975) q2 = 0.368 (2) Å/ 0.113 (2)Å and ϕ2 =104.4 (3)° / 184.2 (12)°. The pyrrolidine ring N2/C5—C8 exhibits twist conformation with assymetry parameter ΔC2 (N2) =3.1 (3), and with the puckering parameters q2 = 0.365 (3) Å, ϕ2 = 272.4 (4)°.

The sum of bond angles around N1 [354.96°] and that around atom N2 [343.25°] indicate sp2 hybridizations. The azetidinone ring is almost perpendicular to the pyrrolidine ring N2/C4/C5/C9/C10 making a dihedral angle of 88.70 (8)°. The other pyrrolidine ring N2/C5—C8 makes a dihedral angle of 80.15 (6)° with the central β lactam moiety while that of the phenyl ring is 60.19 (9)°.

In the crystal packing, atoms O1 and O6 are involved in intermolecular C - H···O interactions and atoms O1 and O2 are involved in intramolecular C - H···O interactions.

Related literature top

For related literature, see: Allen et al. (1987); Alonso et al. (2002); Aoyama et al. (2001); Chande et al. (2005); Cremer & Pople (1975); Escolano & Jones (2000); Halve et al. (2007); Kamala et al. (2008); Nardelli (1983); Pinna et al. (2002); Poornachandran & Raghunathan (2006); Raj & Raghunathan (2001); Raj et al. (2003).

Experimental top

To a solution of ninhydrin (1 mmol), proline (1 mmol) in dry acetonitrile (10 ml) was added β-azetidinyl crotonic ester (1 mmol) under nitrogen atmosphere. The solution was refluxed for 2–3 h. After completion of reaction the solvent was distilled off under reduced pressure. The crude product was purified by column chromatography using hexane: ethylacetate (8:2) as eluent. The product was crystallized by ethylacetate.

Refinement top

Atom C21 is disordered over two positions (C21A/C21B), with refined occupancies of 0.594 (8) and 0.406 (8). H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H = 0.93 or 0.96 Å and Uiso(H)= 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed along b axis.
Ethyl 1'-[1-(4-methoxyphenyl)-3-phenoxy-4-phenylazetidin-1-yl]-1,3-dioxo- 2',3',5',6',7',7a'-hexahydroindan-2-spiro-3'-1'H-pyrrolizine-2'-carboxylate top
Crystal data top
C34H32N2O7F(000) = 1224
Mr = 580.62Dx = 1.320 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 66713 reflections
a = 12.4776 (7) Åθ = 2.0–28.7°
b = 12.4946 (6) ŵ = 0.09 mm1
c = 19.4958 (11) ÅT = 293 K
β = 106.013 (3)°Prism, colourless
V = 2921.5 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
7446 independent reflections
Radiation source: fine-focus sealed tube4654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scanθmax = 28.7°, θmin = 2.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1616
Tmin = 0.973, Tmax = 0.982k = 1616
66713 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.225H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.1376P)2 + 1.4238P]
where P = (Fo2 + 2Fc2)/3
7446 reflections(Δ/σ)max < 0.001
395 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C34H32N2O7V = 2921.5 (3) Å3
Mr = 580.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4776 (7) ŵ = 0.09 mm1
b = 12.4946 (6) ÅT = 293 K
c = 19.4958 (11) Å0.30 × 0.20 × 0.20 mm
β = 106.013 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
7446 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4654 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.037
66713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.225H-atom parameters constrained
S = 0.92Δρmax = 0.70 e Å3
7446 reflectionsΔρmin = 0.25 e Å3
395 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.10567 (17)0.74081 (19)0.12572 (12)0.0482 (5)
C20.20897 (17)0.67935 (17)0.16633 (12)0.0457 (5)
H20.18840.61210.18520.055*
C30.22628 (15)0.76987 (17)0.22302 (11)0.0414 (4)
H30.21710.74190.26800.050*
C40.32801 (15)0.84224 (16)0.23708 (10)0.0386 (4)
H40.31750.90130.26760.046*
C50.43512 (16)0.78329 (19)0.27532 (11)0.0456 (5)
H50.42920.70840.25980.055*
C60.4746 (2)0.7876 (3)0.35635 (13)0.0686 (8)
H6A0.44870.72590.37750.082*
H6B0.44930.85240.37450.082*
C70.6006 (3)0.7866 (3)0.37091 (16)0.0828 (9)
H7A0.63640.81710.41730.099*
H7B0.62800.71430.36910.099*
C80.6216 (2)0.8539 (3)0.31244 (15)0.0715 (8)
H8A0.62830.92880.32590.086*
H8B0.68930.83150.30130.086*
C90.48118 (15)0.91979 (17)0.20062 (11)0.0413 (4)
C100.35503 (15)0.88984 (16)0.17155 (10)0.0383 (4)
H100.34730.83370.13540.046*
C110.49581 (16)1.03640 (19)0.22699 (12)0.0470 (5)
C120.53156 (17)1.10040 (19)0.17360 (12)0.0493 (5)
C130.5449 (2)1.2101 (2)0.17030 (17)0.0686 (7)
H130.52861.25530.20400.082*
C140.5828 (3)1.2501 (3)0.11582 (19)0.0835 (9)
H140.59231.32350.11260.100*
C150.6071 (3)1.1836 (3)0.06565 (17)0.0780 (9)
H150.63331.21310.02960.094*
C160.5934 (2)1.0753 (2)0.06794 (14)0.0607 (6)
H160.60951.03070.03390.073*
C170.55463 (16)1.03373 (19)0.12275 (11)0.0468 (5)
C180.53427 (16)0.92134 (18)0.13783 (11)0.0443 (5)
C190.28198 (16)0.98272 (18)0.13906 (11)0.0425 (4)
C200.1937 (3)1.0703 (3)0.03029 (16)0.0873 (10)
H20A0.13581.08660.05320.105*0.594 (8)
H20B0.15821.04750.01820.105*0.594 (8)
H20C0.20321.13460.05930.105*0.406 (8)
H20D0.21321.08670.01340.105*0.406 (8)
C21A0.2620 (3)1.1658 (3)0.02972 (16)0.107 (3)0.594 (8)
H21A0.21561.22250.00440.161*0.594 (8)
H21B0.31851.14940.00650.161*0.594 (8)
H21C0.29661.18810.07790.161*0.594 (8)
C21B0.0759 (8)1.0331 (10)0.0133 (6)0.122 (5)0.406 (8)
H21D0.02751.08810.01230.184*0.406 (8)
H21E0.05711.01750.05680.184*0.406 (8)
H21F0.06720.96970.01550.184*0.406 (8)
C220.27365 (19)0.58488 (18)0.08017 (12)0.0491 (5)
C230.3552 (2)0.5747 (2)0.04537 (14)0.0640 (7)
H230.41820.61810.05760.077*
C240.3422 (3)0.4997 (4)0.00750 (19)0.0970 (12)
H240.39680.49200.03140.116*
C250.2488 (4)0.4355 (4)0.0256 (2)0.1091 (14)
H250.24070.38480.06160.131*
C260.1680 (3)0.4462 (3)0.00915 (19)0.0888 (10)
H260.10520.40250.00300.107*
C270.1798 (2)0.5210 (2)0.06166 (15)0.0627 (6)
H270.12460.52900.08500.075*
C280.03902 (16)0.87881 (18)0.19790 (11)0.0432 (5)
C290.07248 (19)0.8653 (2)0.16113 (14)0.0612 (7)
H290.09270.81690.12350.073*
C300.1525 (2)0.9233 (3)0.18030 (15)0.0716 (8)
H300.22710.91390.15570.086*
C310.12380 (17)0.9960 (2)0.23592 (13)0.0521 (5)
C320.01383 (18)1.0081 (2)0.27267 (13)0.0539 (6)
H320.00641.05600.31050.065*
C330.06725 (17)0.9490 (2)0.25347 (13)0.0541 (6)
H330.14170.95730.27880.065*
C340.1843 (2)1.1296 (3)0.30349 (17)0.0733 (8)
H34A0.25191.16120.30830.110*
H34B0.13901.18390.29050.110*
H34C0.14421.09790.34800.110*
N10.11960 (13)0.81469 (15)0.17864 (9)0.0434 (4)
N20.52356 (13)0.83599 (16)0.25133 (9)0.0475 (4)
O10.03516 (15)0.73016 (17)0.06980 (10)0.0708 (5)
O20.29362 (12)0.66240 (13)0.13240 (9)0.0511 (4)
O30.26535 (15)0.98497 (17)0.06915 (9)0.0666 (5)
O40.24443 (15)1.04707 (14)0.17193 (10)0.0616 (5)
O50.55371 (16)0.84351 (15)0.10714 (10)0.0639 (5)
O60.48258 (15)1.06910 (16)0.28235 (10)0.0658 (5)
O70.21005 (14)1.05041 (18)0.25026 (11)0.0750 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0365 (10)0.0494 (12)0.0561 (12)0.0029 (9)0.0085 (9)0.0051 (10)
C20.0376 (10)0.0395 (11)0.0607 (12)0.0051 (8)0.0145 (9)0.0032 (9)
C30.0311 (9)0.0451 (11)0.0476 (10)0.0006 (8)0.0102 (8)0.0025 (9)
C40.0309 (8)0.0410 (11)0.0427 (10)0.0004 (7)0.0084 (7)0.0009 (8)
C50.0338 (9)0.0499 (12)0.0512 (11)0.0008 (8)0.0083 (8)0.0021 (9)
C60.0541 (14)0.101 (2)0.0501 (13)0.0124 (14)0.0131 (11)0.0156 (14)
C70.0630 (17)0.109 (3)0.0643 (17)0.0003 (17)0.0024 (13)0.0053 (17)
C80.0395 (12)0.100 (2)0.0647 (15)0.0042 (13)0.0028 (11)0.0059 (15)
C90.0309 (9)0.0485 (12)0.0448 (10)0.0033 (8)0.0109 (7)0.0059 (9)
C100.0308 (8)0.0401 (10)0.0425 (10)0.0036 (7)0.0077 (7)0.0026 (8)
C110.0322 (9)0.0539 (13)0.0558 (12)0.0035 (9)0.0135 (8)0.0120 (10)
C120.0351 (10)0.0510 (13)0.0590 (13)0.0064 (9)0.0085 (9)0.0057 (10)
C130.0658 (16)0.0542 (15)0.0807 (18)0.0097 (12)0.0118 (14)0.0094 (13)
C140.089 (2)0.0647 (18)0.090 (2)0.0250 (16)0.0134 (18)0.0087 (17)
C150.0711 (18)0.087 (2)0.0725 (18)0.0257 (16)0.0138 (14)0.0177 (17)
C160.0476 (12)0.0776 (18)0.0566 (13)0.0120 (12)0.0137 (10)0.0049 (12)
C170.0311 (9)0.0563 (13)0.0512 (11)0.0050 (9)0.0086 (8)0.0012 (10)
C180.0327 (9)0.0529 (12)0.0485 (11)0.0011 (8)0.0131 (8)0.0045 (9)
C190.0340 (9)0.0434 (11)0.0495 (11)0.0026 (8)0.0105 (8)0.0019 (9)
C200.088 (2)0.098 (3)0.0670 (17)0.0316 (19)0.0052 (15)0.0254 (17)
C21A0.133 (6)0.068 (4)0.107 (5)0.023 (4)0.011 (4)0.022 (3)
C21B0.080 (6)0.141 (10)0.129 (9)0.019 (6)0.001 (6)0.055 (8)
C220.0487 (11)0.0448 (12)0.0528 (12)0.0033 (9)0.0123 (9)0.0031 (10)
C230.0611 (14)0.0724 (18)0.0618 (14)0.0109 (13)0.0226 (12)0.0083 (13)
C240.100 (2)0.118 (3)0.089 (2)0.022 (2)0.053 (2)0.040 (2)
C250.130 (3)0.118 (3)0.094 (2)0.044 (3)0.054 (2)0.059 (2)
C260.091 (2)0.086 (2)0.094 (2)0.0354 (18)0.0343 (19)0.0377 (19)
C270.0583 (14)0.0573 (15)0.0752 (16)0.0134 (12)0.0231 (12)0.0146 (13)
C280.0328 (9)0.0461 (11)0.0500 (11)0.0008 (8)0.0103 (8)0.0046 (9)
C290.0388 (11)0.0800 (18)0.0580 (13)0.0066 (11)0.0023 (10)0.0167 (12)
C300.0341 (11)0.100 (2)0.0713 (16)0.0126 (12)0.0011 (11)0.0178 (15)
C310.0366 (10)0.0601 (14)0.0599 (13)0.0074 (9)0.0137 (9)0.0025 (11)
C320.0401 (11)0.0583 (14)0.0641 (14)0.0066 (10)0.0155 (10)0.0128 (11)
C330.0306 (9)0.0584 (14)0.0709 (15)0.0067 (9)0.0098 (9)0.0141 (12)
C340.0636 (16)0.082 (2)0.0797 (19)0.0160 (14)0.0285 (14)0.0077 (15)
N10.0304 (8)0.0476 (10)0.0494 (9)0.0001 (7)0.0061 (7)0.0033 (8)
N20.0293 (8)0.0623 (12)0.0488 (10)0.0019 (7)0.0073 (7)0.0034 (8)
O10.0556 (10)0.0786 (13)0.0656 (11)0.0073 (9)0.0046 (8)0.0213 (10)
O20.0393 (7)0.0479 (9)0.0687 (10)0.0074 (6)0.0192 (7)0.0137 (7)
O30.0678 (11)0.0783 (13)0.0503 (9)0.0240 (9)0.0105 (8)0.0119 (9)
O40.0674 (11)0.0517 (10)0.0673 (11)0.0153 (8)0.0215 (9)0.0030 (8)
O50.0721 (11)0.0602 (11)0.0690 (11)0.0061 (9)0.0357 (9)0.0104 (9)
O60.0601 (10)0.0743 (12)0.0706 (11)0.0127 (9)0.0307 (9)0.0277 (9)
O70.0414 (9)0.0941 (15)0.0896 (13)0.0143 (9)0.0183 (9)0.0205 (11)
Geometric parameters (Å, º) top
C1—O11.205 (3)C19—O41.201 (3)
C1—N11.359 (3)C19—O31.321 (3)
C1—C21.522 (3)C20—C21B1.489 (11)
C2—O21.408 (2)C20—O31.462 (3)
C2—C31.554 (3)C20—C21A1.4690
C2—H20.9800C20—H20A0.9700
C3—N11.483 (3)C20—H20B0.9700
C3—C41.521 (3)C20—H20C0.9700
C3—H30.9800C20—H20D0.9700
C4—C101.529 (3)C21A—H21A0.9600
C4—C51.528 (3)C21A—H21B0.9600
C4—H40.9800C21A—H21C0.9600
C5—N21.468 (3)C21B—H21D0.9600
C5—C61.520 (3)C21B—H21E0.9600
C5—H50.9800C21B—H21F0.9600
C6—C71.519 (4)C22—C231.376 (3)
C6—H6A0.9700C22—O21.377 (3)
C6—H6B0.9700C22—C271.380 (3)
C7—C81.497 (4)C23—C241.369 (4)
C7—H7A0.9700C23—H230.9300
C7—H7B0.9700C24—C251.378 (5)
C8—N21.470 (3)C24—H240.9300
C8—H8A0.9700C25—C261.368 (5)
C8—H8B0.9700C25—H250.9300
C9—N21.437 (3)C26—C271.364 (4)
C9—C111.539 (3)C26—H260.9300
C9—C181.544 (3)C27—H270.9300
C9—C101.564 (3)C28—C331.363 (3)
C10—C191.503 (3)C28—C291.388 (3)
C10—H100.9800C28—N11.415 (3)
C11—O61.207 (3)C29—C301.366 (4)
C11—C121.476 (3)C29—H290.9300
C12—C131.385 (4)C30—C311.384 (4)
C12—C171.385 (3)C30—H300.9300
C13—C141.370 (5)C31—O71.365 (3)
C13—H130.9300C31—C321.370 (3)
C14—C151.379 (5)C32—C331.385 (3)
C14—H140.9300C32—H320.9300
C15—C161.367 (4)C33—H330.9300
C15—H150.9300C34—O71.405 (4)
C16—C171.389 (3)C34—H34A0.9600
C16—H160.9300C34—H34B0.9600
C17—C181.471 (3)C34—H34C0.9600
C18—O51.201 (3)
O1—C1—N1132.1 (2)C21B—C20—O3108.2 (5)
O1—C1—C2135.9 (2)C21B—C20—C21A142.3 (5)
N1—C1—C292.01 (17)O3—C20—C21A108.85 (17)
O2—C2—C1117.96 (19)C21B—C20—H20A49.7
O2—C2—C3117.93 (16)O3—C20—H20A109.9
C1—C2—C386.24 (16)C21A—C20—H20A109.9
O2—C2—H2110.9C21B—C20—H20B62.3
C1—C2—H2110.9O3—C20—H20B109.9
C3—C2—H2110.9C21A—C20—H20B109.9
N1—C3—C4116.81 (17)H20A—C20—H20B108.3
N1—C3—C286.19 (15)C21B—C20—H20C110.1
C4—C3—C2120.41 (17)O3—C20—H20C110.1
N1—C3—H3110.4C21A—C20—H20C49.7
C4—C3—H3110.4H20A—C20—H20C62.9
C2—C3—H3110.4H20B—C20—H20C139.5
C3—C4—C10116.51 (16)C21B—C20—H20D110.1
C3—C4—C5112.06 (17)O3—C20—H20D110.1
C10—C4—C5103.33 (15)C21A—C20—H20D62.2
C3—C4—H4108.2H20A—C20—H20D139.5
C10—C4—H4108.2H20B—C20—H20D50.5
C5—C4—H4108.2H20C—C20—H20D108.4
N2—C5—C6105.00 (18)C20—C21A—H21A109.5
N2—C5—C4105.16 (17)C20—C21A—H21B109.5
C6—C5—C4118.62 (19)H21A—C21A—H21B109.5
N2—C5—H5109.2C20—C21A—H21C109.5
C6—C5—H5109.2H21A—C21A—H21C109.5
C4—C5—H5109.2H21B—C21A—H21C109.5
C5—C6—C7102.5 (2)C20—C21B—H21D109.5
C5—C6—H6A111.3C20—C21B—H21E109.5
C7—C6—H6A111.3H21D—C21B—H21E109.5
C5—C6—H6B111.3C20—C21B—H21F109.5
C7—C6—H6B111.3H21D—C21B—H21F109.5
H6A—C6—H6B109.2H21E—C21B—H21F109.5
C8—C7—C6104.1 (2)C23—C22—O2115.0 (2)
C8—C7—H7A110.9C23—C22—C27120.5 (2)
C6—C7—H7A110.9O2—C22—C27124.6 (2)
C8—C7—H7B110.9C22—C23—C24119.0 (3)
C6—C7—H7B110.9C22—C23—H23120.5
H7A—C7—H7B109.0C24—C23—H23120.5
N2—C8—C7104.5 (2)C23—C24—C25120.5 (3)
N2—C8—H8A110.9C23—C24—H24119.7
C7—C8—H8A110.9C25—C24—H24119.7
N2—C8—H8B110.9C26—C25—C24120.2 (3)
C7—C8—H8B110.9C26—C25—H25119.9
H8A—C8—H8B108.9C24—C25—H25119.9
N2—C9—C11118.21 (17)C25—C26—C27119.8 (3)
N2—C9—C18113.43 (17)C25—C26—H26120.1
C11—C9—C18102.45 (17)C27—C26—H26120.1
N2—C9—C10102.57 (16)C26—C27—C22120.1 (3)
C11—C9—C10111.24 (16)C26—C27—H27120.0
C18—C9—C10108.94 (16)C22—C27—H27120.0
C19—C10—C4113.86 (16)C33—C28—C29119.4 (2)
C19—C10—C9113.61 (17)C33—C28—N1121.92 (18)
C4—C10—C9102.83 (15)C29—C28—N1118.6 (2)
C19—C10—H10108.8C30—C29—C28119.9 (2)
C4—C10—H10108.8C30—C29—H29120.1
C9—C10—H10108.8C28—C29—H29120.1
O6—C11—C12126.1 (2)C29—C30—C31120.8 (2)
O6—C11—C9125.9 (2)C29—C30—H30119.6
C12—C11—C9107.97 (18)C31—C30—H30119.6
C13—C12—C17120.7 (2)O7—C31—C32124.8 (2)
C13—C12—C11129.3 (2)O7—C31—C30116.1 (2)
C17—C12—C11110.0 (2)C32—C31—C30119.2 (2)
C14—C13—C12117.9 (3)C31—C32—C33120.1 (2)
C14—C13—H13121.0C31—C32—H32120.0
C12—C13—H13121.0C33—C32—H32120.0
C13—C14—C15121.4 (3)C28—C33—C32120.7 (2)
C13—C14—H14119.3C28—C33—H33119.7
C15—C14—H14119.3C32—C33—H33119.7
C16—C15—C14121.3 (3)O7—C34—H34A109.5
C16—C15—H15119.4O7—C34—H34B109.5
C14—C15—H15119.4H34A—C34—H34B109.5
C15—C16—C17117.9 (3)O7—C34—H34C109.5
C15—C16—H16121.0H34A—C34—H34C109.5
C17—C16—H16121.0H34B—C34—H34C109.5
C16—C17—C12120.7 (2)C1—N1—C28129.38 (17)
C16—C17—C18128.8 (2)C1—N1—C395.32 (16)
C12—C17—C18110.47 (19)C28—N1—C3130.41 (17)
O5—C18—C17127.1 (2)C9—N2—C5112.32 (15)
O5—C18—C9125.1 (2)C9—N2—C8120.9 (2)
C17—C18—C9107.81 (18)C5—N2—C8109.91 (18)
O4—C19—O3124.3 (2)C22—O2—C2116.54 (16)
O4—C19—C10124.9 (2)C19—O3—C20116.7 (2)
O3—C19—C10110.83 (18)C31—O7—C34118.0 (2)
O1—C1—C2—O258.3 (4)C11—C9—C18—C1710.5 (2)
N1—C1—C2—O2123.46 (19)C10—C9—C18—C17107.36 (19)
O1—C1—C2—C3178.1 (3)C4—C10—C19—O433.5 (3)
N1—C1—C2—C33.69 (16)C9—C10—C19—O483.8 (3)
O2—C2—C3—N1123.2 (2)C4—C10—C19—O3147.20 (18)
C1—C2—C3—N13.39 (15)C9—C10—C19—O395.5 (2)
O2—C2—C3—C44.2 (3)O2—C22—C23—C24179.9 (3)
C1—C2—C3—C4115.6 (2)C27—C22—C23—C240.5 (4)
N1—C3—C4—C1054.3 (2)C22—C23—C24—C250.1 (6)
C2—C3—C4—C1047.9 (3)C23—C24—C25—C260.0 (7)
N1—C3—C4—C5172.95 (17)C24—C25—C26—C270.3 (7)
C2—C3—C4—C570.8 (2)C25—C26—C27—C220.7 (6)
C3—C4—C5—N2150.00 (17)C23—C22—C27—C260.8 (4)
C10—C4—C5—N223.8 (2)O2—C22—C27—C26179.9 (3)
C3—C4—C5—C693.0 (3)C33—C28—C29—C300.9 (4)
C10—C4—C5—C6140.7 (2)N1—C28—C29—C30177.6 (3)
N2—C5—C6—C729.2 (3)C28—C29—C30—C310.3 (5)
C4—C5—C6—C7146.3 (2)C29—C30—C31—O7179.4 (3)
C5—C6—C7—C837.7 (3)C29—C30—C31—C321.1 (4)
C6—C7—C8—N231.8 (3)O7—C31—C32—C33179.8 (2)
C3—C4—C10—C1977.5 (2)C30—C31—C32—C330.8 (4)
C5—C4—C10—C19159.12 (17)C29—C28—C33—C321.2 (4)
C3—C4—C10—C9159.09 (17)N1—C28—C33—C32177.8 (2)
C5—C4—C10—C935.8 (2)C31—C32—C33—C280.3 (4)
N2—C9—C10—C19158.22 (17)O1—C1—N1—C2825.5 (4)
C11—C9—C10—C1930.9 (2)C2—C1—N1—C28152.9 (2)
C18—C9—C10—C1981.3 (2)O1—C1—N1—C3177.8 (3)
N2—C9—C10—C434.68 (19)C2—C1—N1—C33.88 (17)
C11—C9—C10—C492.64 (19)C33—C28—N1—C1179.3 (2)
C18—C9—C10—C4155.16 (17)C29—C28—N1—C12.7 (4)
N2—C9—C11—O642.0 (3)C33—C28—N1—C330.4 (3)
C18—C9—C11—O6167.5 (2)C29—C28—N1—C3146.2 (2)
C10—C9—C11—O676.2 (3)C4—C3—N1—C1118.5 (2)
N2—C9—C11—C12136.57 (18)C2—C3—N1—C13.80 (17)
C18—C9—C11—C1211.1 (2)C4—C3—N1—C2885.1 (3)
C10—C9—C11—C12105.17 (18)C2—C3—N1—C28152.6 (2)
O6—C11—C12—C138.3 (4)C11—C9—N2—C5102.0 (2)
C9—C11—C12—C13173.2 (2)C18—C9—N2—C5138.09 (18)
O6—C11—C12—C17170.6 (2)C10—C9—N2—C520.8 (2)
C9—C11—C12—C178.0 (2)C11—C9—N2—C830.4 (3)
C17—C12—C13—C140.8 (4)C18—C9—N2—C889.5 (2)
C11—C12—C13—C14178.0 (2)C10—C9—N2—C8153.2 (2)
C12—C13—C14—C150.0 (5)C6—C5—N2—C9127.4 (2)
C13—C14—C15—C160.6 (5)C4—C5—N2—C91.5 (2)
C14—C15—C16—C170.3 (4)C6—C5—N2—C810.2 (3)
C15—C16—C17—C120.5 (3)C4—C5—N2—C8136.1 (2)
C15—C16—C17—C18179.1 (2)C7—C8—N2—C9146.9 (2)
C13—C12—C17—C161.0 (3)C7—C8—N2—C513.5 (3)
C11—C12—C17—C16177.95 (19)C23—C22—O2—C2176.5 (2)
C13—C12—C17—C18179.9 (2)C27—C22—O2—C22.9 (3)
C11—C12—C17—C180.9 (2)C1—C2—O2—C2275.8 (2)
C16—C17—C18—O54.5 (4)C3—C2—O2—C22177.18 (18)
C12—C17—C18—O5174.2 (2)O4—C19—O3—C201.9 (4)
C16—C17—C18—C9174.8 (2)C10—C19—O3—C20178.8 (2)
C12—C17—C18—C96.4 (2)C21B—C20—O3—C1986.4 (6)
N2—C9—C18—O541.5 (3)C21A—C20—O3—C1986.9 (2)
C11—C9—C18—O5170.1 (2)C32—C31—O7—C344.3 (4)
C10—C9—C18—O572.0 (3)C30—C31—O7—C34176.3 (3)
N2—C9—C18—C17139.10 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.982.453.151 (3)129
C26—H26···O1ii0.932.503.390 (4)160
C8—H8A···O60.972.503.166 (4)126
C10—H10···O20.982.242.987 (3)132
C29—H29···O10.932.403.024 (3)125
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC34H32N2O7
Mr580.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.4776 (7), 12.4946 (6), 19.4958 (11)
β (°) 106.013 (3)
V3)2921.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
66713, 7446, 4654
Rint0.037
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.225, 0.92
No. of reflections7446
No. of parameters395
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.25

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.982.453.151 (3)129
C26—H26···O1ii0.932.503.390 (4)160
C8—H8A···O60.972.503.166 (4)126
C10—H10···O20.982.242.987 (3)132
C29—H29···O10.932.403.024 (3)125
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

ETSK thanks Professor M. N. Ponnuswamy and Professor D. Velmurugan, Department of Crystallography and Bio­physics, University of Madras, India, for their guidance and valuable suggestions, and SRM Management for their support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAlonso, E., Del Pozo, C. & Gonzalez, J. (2002). Synlett, pp. 69–72.  CrossRef Google Scholar
First citationAoyama, Y., Uenaka, M., Kii, M., Tanaka, M., Konoike, T., Hayasaki Kajiwara, Y., Naya, N. & Nakajima, M. (2001). Bioorg. Med. Chem. 9, 3065–3075.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEscolano, C. & Jones, K. (2000). Tetrahedron Lett., 41, 8951–8955.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHalve, A. K., Bhadauria, D. & Dubey, R. (2007). Bioorg. Med. Chem. Lett. 17, 341–345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716–o717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPinna, G. A., Pirisi, M. A., Chelucci, G., Mussinu, J. M., Murineddu, G., Loriga, G., D'Aquila, P. S. & Serra, G. (2002). Bioorg. Med. Chem. 10, 2485–2496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPoornachandran, M. & Raghunathan, R. (2006). Tetrahedron, 62, 11274–11281.  Web of Science CrossRef CAS Google Scholar
First citationRaj, A. A. & Raghunathan, R. (2001). Tetrahedron, 57, 10293–10298.  CAS Google Scholar
First citationRaj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1832-o1833
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds