organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Diiso­propyl­phen­yl)formamide

aDepartment of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9, and bSaskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9
*Correspondence e-mail: stephen.foley@usask.ca

(Received 9 May 2008; accepted 1 August 2008; online 9 August 2008)

The title compound, C13H19NO, exhibits a non-planar structure in which the 2,6-diisopropyl­phenyl ring is tilted at a dihedral angle of 77.4 (1)° with respect to the formamide group. This is the largest dihedral angle known among structurally characterized formamides. The mol­ecules are linked via N—H⋯O hydrogen bonds, forming infinite chains which run along the b-axis directions.

Related literature

For related literature, see: Boeyens et al. (1988[Boeyens, J. C. A., Denner, L. & Evans, D. G. (1988). J. Crystallogr. Spectrosc. Res. 18, 175-176.]); Ferguson et al. (1998[Ferguson, G., Low, J. N., Penner, G. H. & Wardell, J. L. (1998). Acta Cryst. C54, 1974-1977.]); Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-793.]); Krishnamurthy (1982[Krishnamurthy, S. (1982). Tetrahedron Lett. 23, 3315-3318.]); LaPlanche & Rogers (1964[LaPlanche, L. A. & Rogers, M. T. (1964). J. Am. Chem. Soc. 86, 337-341.]); Omondi et al. (2005[Omondi, B., Fernandes, M. A., Layh, M., Levendis, D. C., Look, J. L. & Mkwizu, T. S. P. (2005). CrystEngComm. 7, 690-700.]); Cerecetto et al. (2004[Cerecetto, H., Gerpe, A., Gonzalez, M., Fernadez Sainz, Y., Piro, O. E. & Castellano, E. E. (2004). Synthesis, pp. 2678-2684.]); Chitanda et al. (2008[Chitanda, J. M., Prokopchuk, D. E., Quail, J. W. & Foley, S. R. (2008). Organometallics, 27, 2337-2345.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19NO

  • Mr = 205.29

  • Monoclinic, P 21 /c

  • a = 8.9581 (15) Å

  • b = 8.7684 (15) Å

  • c = 15.840 (6) Å

  • β = 105.381 (10)°

  • V = 1199.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 (2) K

  • 0.25 × 0.05 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 7758 measured reflections

  • 2365 independent reflections

  • 1556 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.128

  • S = 1.05

  • 2365 reflections

  • 140 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.04 2.910 (2) 171
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of the ongoing research in our laboratory directed at the synthesis substituted iminoisoindolines (Chitanda et al., 2008), the title compound was obtained as a by-product and then purposefully synthesized in 92% yield. N-(2,6-diisopropylphenyl)formamide has been previously reported (Krishnamurthy, 1982), however no X-ray structure nor NMR data has been previously published. We have now determined the single-crystal X-ray structure of the title compound, (I).

The 1H NMR (CDCl3) spectra of I is a mixture of two carbon-nitrogen bond rotomers, where the ratio of the major rotomer to the minor rotomer is about 2:1. Upon crystallization however, the solid state structure shows exclusive formation of the cisoidal rotomer. As shown in Figure 1, the carbonyl group on the formamide moiety is positioned almost perpendicular to the plane of the aromatic ring, and is oriented cis to the aromatic group about the carbon-nitrogen bond. The dihedral angle between the plane of the aromatic ring and that formed by the N—C=O moiety is 77.4 (1)°, which is considerably larger than the corresponding angle in previously structurally characterized aryl-substituted formamides (Figure 3). This is attributed to the presence of the bulky isopropyl groups on the ortho positions of the phenyl ring which increases torsional strain between the two planes defining the dihedral angle. For example, in the less bulky analogue, N-(4-methoxyphenyl)formamide, the dihedral angle is only 8.0 (3)° (Figure 3, Cerecetto et al., 2004). The two isomers of the title compound arise due to hindered rotation about the amidic bond (LaPlanche et al., 1964). (I) crystallizes in the monoclinic space group P21/c. The molecules of (I) are linked to form infinite chains which run along the b axis direction via N—H···O hydrogen bonds (details in Table 3).

Related literature top

For related literature, see: Boeyens et al. (1988); Ferguson et al. (1998); Gowda et al. (2000); Krishnamurthy (1982); LaPlanche & Rogers (1964); Omondi et al. (2005); Cerecetto et al. (2004); Chitanda et al. (2008).

Experimental top

The refined procedure for the synthesis of (I) is as follows: A solution of 2,6-diisopropyl aniline (4.695 g, 26.5 mmol s) and formic acid (7.314 g, 159.0 mmol, 6eq.) in chloroform (20 ml) was refluxed with continuous stirring for 16 hrs. The colour of the solution changed from yellow to green to colorless over the course of the reaction. The solvent and excess formic acid were removed under vacuum to yield the title compound as a white solid. Needle-like single crystals suitable for X-ray analysis were obtained from slow evaporation of a chloroform solution (5.00 g, 92%). 1H-NMR (CDCl3, p.p.m.): Two rotomers observed in 2:1 ratio. Major Rotomer: δ 1.19 (d, J = 6.9 Hz, 12H, –CH(CH3)2), δ 3.08 (septet, J = 6.9 Hz, 2H, –CH(CH3)2) δ 6.64 (s(br), 1H, –NH–), δ 7.17 (m, 2H, aromatic), δ 7.30 (m, 1H, aromatic), δ 8.47 (s, 1H, –C(H)=O). 13C-NMR (CDCl3, p.p.m.): δ 23.74 (CH(CH3)2), d 28.9 (–CH(CH3)2), d 123.6, δ 128.7, δ 129.9, δ 146.2, δ 161.0 (–C(H)=O). Minor Rotomer: δ 1.20 (d, J = 6.9 Hz, 12H, –CH(CH3)2), δ 3.20 (septet, J = 6.9 Hz, 2H, –CH(CH3)2) δ 7.02 (d, J = 11.2 Hz, 1H, –NH–), δ 7.19 (m, 2H, aromatic), δ 7.30 (m, 1H, aromatic), δ 8.0 (d, J = 11.2 Hz, 1H, –C(H)=O). 13C-NMR (CDCl3, p.p.m.), Major Rotomer: δ 23.77 (–CH(CH3)2), δ 28.6 (–CH(CH3)2), δ 123.9, δ 129.0, δ 130.4, δ 146.9, δ 165.9 (–C(H)=O). ESI-MS (m/z): calcd. for C13H19NO; 205.1467, 206.1545 [M+H]+; found; 206.1546 [M+H]+.

Refinement top

The hydrogen atoms in the ammonium ions in (II) and (IV) were all found in ΔF maps. The hydrogen atoms were placed in calculated tetrahedral positions on the N atoms (N—H = 0.95 Å). The Uiso of each H atom was assigned as equal to 1.5 times the Ueq of the attached N atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labeling scheme. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of (I), with hydrogen bonds shown as dashed lines. For clarity, H-atoms have been omitted.
[Figure 3] Fig. 3. Dihedral angle of previously characterized aryl-substituted formamides
N-(2,6-Diisopropylphenyl)formamide top
Crystal data top
C13H19NOF(000) = 448
Mr = 205.29Dx = 1.137 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5165 reflections
a = 8.9581 (15) Åθ = 1.0–27.5°
b = 8.7684 (15) ŵ = 0.07 mm1
c = 15.840 (6) ÅT = 173 K
β = 105.381 (10)°Rod, colourless
V = 1199.6 (5) Å30.25 × 0.05 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1556 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
Horizonally mounted graphite crystal monochromatorθmax = 26.0°, θmin = 2.4°
Detector resolution: 9 pixels mm-1h = 1111
ϕ scans and ω scans with κ offsetsk = 1010
7758 measured reflectionsl = 1719
2365 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.2338P]
where P = (Fo2 + 2Fc2)/3
2365 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H19NOV = 1199.6 (5) Å3
Mr = 205.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9581 (15) ŵ = 0.07 mm1
b = 8.7684 (15) ÅT = 173 K
c = 15.840 (6) Å0.25 × 0.05 × 0.05 mm
β = 105.381 (10)°
Data collection top
Nonius KappaCCD
diffractometer
1556 reflections with I > 2σ(I)
7758 measured reflectionsRint = 0.070
2365 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
2365 reflectionsΔρmin = 0.20 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51988 (18)0.05926 (16)0.22728 (10)0.0277 (4)
H10.54450.03800.22820.033*
O10.40304 (16)0.24069 (14)0.29095 (9)0.0385 (4)
C10.5662 (2)0.15772 (18)0.16592 (12)0.0253 (4)
C20.7219 (2)0.20161 (19)0.18370 (13)0.0276 (5)
C30.7655 (2)0.2939 (2)0.12239 (14)0.0311 (5)
H30.87010.32600.13290.037*
C40.6582 (2)0.3389 (2)0.04654 (14)0.0326 (5)
H40.68980.40120.00530.039*
C50.5059 (2)0.2940 (2)0.03028 (13)0.0319 (5)
H50.43370.32550.02230.038*
C60.4557 (2)0.20300 (19)0.08966 (12)0.0267 (4)
C70.2869 (2)0.1551 (2)0.06884 (13)0.0327 (5)
H70.27440.08660.11700.039*
C80.2398 (3)0.0654 (3)0.01662 (16)0.0514 (7)
H8A0.13200.03220.02730.062*
H8B0.30690.02410.01250.062*
H8C0.25040.13040.06500.062*
C90.1804 (2)0.2920 (2)0.06525 (17)0.0460 (6)
H9A0.07360.25660.05640.055*
H9B0.18670.35870.01670.055*
H9C0.21250.34870.12040.055*
C100.8387 (2)0.1508 (2)0.26749 (14)0.0349 (5)
H100.81160.04410.28000.042*
C111.0061 (2)0.1496 (3)0.26122 (17)0.0505 (6)
H11A1.07270.10260.31400.061*
H11B1.04040.25450.25600.061*
H11C1.01250.09090.20970.061*
C120.8260 (3)0.2501 (3)0.34482 (15)0.0468 (6)
H12A0.89390.20920.39910.056*
H12B0.71870.24990.34880.056*
H12C0.85730.35480.33600.056*
C130.4417 (2)0.1082 (2)0.28273 (13)0.0309 (5)
H130.41310.03390.31920.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0361 (9)0.0177 (7)0.0303 (10)0.0005 (6)0.0103 (8)0.0028 (6)
O10.0492 (9)0.0278 (7)0.0443 (9)0.0025 (6)0.0228 (7)0.0035 (6)
C10.0337 (11)0.0167 (8)0.0276 (11)0.0004 (7)0.0120 (9)0.0001 (7)
C20.0339 (11)0.0187 (9)0.0328 (12)0.0019 (8)0.0134 (9)0.0012 (7)
C30.0331 (11)0.0229 (9)0.0415 (13)0.0020 (8)0.0171 (10)0.0035 (8)
C40.0464 (13)0.0236 (9)0.0354 (12)0.0022 (9)0.0240 (10)0.0038 (8)
C50.0410 (12)0.0272 (10)0.0284 (11)0.0044 (8)0.0109 (9)0.0027 (8)
C60.0348 (11)0.0205 (9)0.0270 (11)0.0014 (8)0.0120 (9)0.0018 (7)
C70.0339 (12)0.0314 (10)0.0312 (12)0.0015 (8)0.0058 (9)0.0026 (8)
C80.0455 (14)0.0435 (13)0.0606 (17)0.0008 (10)0.0062 (12)0.0204 (11)
C90.0364 (13)0.0465 (13)0.0544 (16)0.0002 (10)0.0106 (11)0.0147 (11)
C100.0342 (12)0.0284 (10)0.0394 (13)0.0004 (8)0.0050 (10)0.0049 (9)
C110.0374 (13)0.0464 (13)0.0636 (17)0.0068 (10)0.0065 (12)0.0032 (11)
C120.0397 (13)0.0600 (14)0.0379 (14)0.0037 (11)0.0052 (11)0.0007 (11)
C130.0361 (11)0.0271 (10)0.0305 (11)0.0062 (8)0.0106 (9)0.0022 (8)
Geometric parameters (Å, º) top
N1—C131.331 (2)C7—H71.0000
N1—C11.441 (2)C8—H8A0.9800
N1—H10.8800C8—H8B0.9800
O1—C131.229 (2)C8—H8C0.9800
C1—C61.401 (3)C9—H9A0.9800
C1—C21.402 (3)C9—H9B0.9800
C2—C31.397 (3)C9—H9C0.9800
C2—C101.522 (3)C10—C111.529 (3)
C3—C41.382 (3)C10—C121.532 (3)
C3—H30.9500C10—H101.0000
C4—C51.377 (3)C11—H11A0.9800
C4—H40.9500C11—H11B0.9800
C5—C61.396 (3)C11—H11C0.9800
C5—H50.9500C12—H12A0.9800
C6—C71.520 (3)C12—H12B0.9800
C7—C91.525 (3)C12—H12C0.9800
C7—C81.525 (3)C13—H130.9500
C13—N1—C1123.23 (15)C7—C8—H8C109.5
C13—N1—H1118.4H8A—C8—H8C109.5
C1—N1—H1118.4H8B—C8—H8C109.5
C6—C1—C2122.22 (17)C7—C9—H9A109.5
C6—C1—N1119.19 (16)C7—C9—H9B109.5
C2—C1—N1118.57 (17)H9A—C9—H9B109.5
C3—C2—C1117.78 (18)C7—C9—H9C109.5
C3—C2—C10121.42 (17)H9A—C9—H9C109.5
C1—C2—C10120.80 (16)H9B—C9—H9C109.5
C4—C3—C2120.77 (18)C2—C10—C11113.87 (18)
C4—C3—H3119.6C2—C10—C12110.56 (16)
C2—C3—H3119.6C11—C10—C12109.77 (18)
C5—C4—C3120.46 (18)C2—C10—H10107.5
C5—C4—H4119.8C11—C10—H10107.5
C3—C4—H4119.8C12—C10—H10107.5
C4—C5—C6121.17 (19)C10—C11—H11A109.5
C4—C5—H5119.4C10—C11—H11B109.5
C6—C5—H5119.4H11A—C11—H11B109.5
C5—C6—C1117.59 (18)C10—C11—H11C109.5
C5—C6—C7119.45 (17)H11A—C11—H11C109.5
C1—C6—C7122.95 (16)H11B—C11—H11C109.5
C6—C7—C9111.57 (15)C10—C12—H12A109.5
C6—C7—C8111.09 (17)C10—C12—H12B109.5
C9—C7—C8110.50 (18)H12A—C12—H12B109.5
C6—C7—H7107.8C10—C12—H12C109.5
C9—C7—H7107.8H12A—C12—H12C109.5
C8—C7—H7107.8H12B—C12—H12C109.5
C7—C8—H8A109.5O1—C13—N1125.92 (17)
C7—C8—H8B109.5O1—C13—H13117.0
H8A—C8—H8B109.5N1—C13—H13117.0
C13—N1—C1—C677.0 (2)N1—C1—C6—C5177.80 (15)
C13—N1—C1—C2104.7 (2)C2—C1—C6—C7179.32 (16)
C6—C1—C2—C30.1 (3)N1—C1—C6—C71.1 (3)
N1—C1—C2—C3178.38 (15)C5—C6—C7—C964.7 (2)
C6—C1—C2—C10179.73 (16)C1—C6—C7—C9116.4 (2)
N1—C1—C2—C102.0 (2)C5—C6—C7—C859.1 (2)
C1—C2—C3—C40.5 (3)C1—C6—C7—C8119.8 (2)
C10—C2—C3—C4179.90 (17)C3—C2—C10—C1124.2 (3)
C2—C3—C4—C50.3 (3)C1—C2—C10—C11156.20 (17)
C3—C4—C5—C60.3 (3)C3—C2—C10—C1299.9 (2)
C4—C5—C6—C10.7 (3)C1—C2—C10—C1279.7 (2)
C4—C5—C6—C7179.57 (17)C1—N1—C13—O12.2 (3)
C2—C1—C6—C50.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.042.910 (2)171
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H19NO
Mr205.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.9581 (15), 8.7684 (15), 15.840 (6)
β (°) 105.381 (10)
V3)1199.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7758, 2365, 1556
Rint0.070
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.128, 1.05
No. of reflections2365
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.042.910 (2)170.8
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

Financial assistance for this project was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) for an operating grant to SRF, and by the Canadian Government through the Commonwealth Scholarship fund for JMC.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoeyens, J. C. A., Denner, L. & Evans, D. G. (1988). J. Crystallogr. Spectrosc. Res. 18, 175–176.  CSD CrossRef CAS Web of Science Google Scholar
First citationCerecetto, H., Gerpe, A., Gonzalez, M., Fernadez Sainz, Y., Piro, O. E. & Castellano, E. E. (2004). Synthesis, pp. 2678–2684.  Web of Science CSD CrossRef Google Scholar
First citationChitanda, J. M., Prokopchuk, D. E., Quail, J. W. & Foley, S. R. (2008). Organometallics, 27, 2337–2345.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Low, J. N., Penner, G. H. & Wardell, J. L. (1998). Acta Cryst. C54, 1974–1977.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–793.  CAS Google Scholar
First citationKrishnamurthy, S. (1982). Tetrahedron Lett. 23, 3315–3318.  CrossRef CAS Web of Science Google Scholar
First citationLaPlanche, L. A. & Rogers, M. T. (1964). J. Am. Chem. Soc. 86, 337–341.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOmondi, B., Fernandes, M. A., Layh, M., Levendis, D. C., Look, J. L. & Mkwizu, T. S. P. (2005). CrystEngComm. 7, 690–700.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds