metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(2-amino-4-methyl­pyridine-κN1)dioxidohexa-μ4-sulfido-hexa­copper(I)divanadium(V)

aDepartment of Chemistry, Huaiyin Teachers College, Huai'an 223300, Jiangsu, People's Republic of China
*Correspondence e-mail: yuzhang@hytc.edu.cn

(Received 3 June 2008; accepted 23 August 2008; online 30 August 2008)

The title compound, [Cu6V2O2S6(C6H8N2)6], is constructed from six CuS3N and two VOS3 distorted tetra­hedra, forming an octa­nuclear V/S/Cu cluster with Ci symmetry. The geometry around the V atoms is slightly distorted tetra­hedral, while there are large distortions from ideal tetra­hedral geometry for the Cu atoms. Adjacent metal–metal distances range from 2.693 (1) to 2.772 (10) Å, indicating weak metal–metal inter­actions in the cluster.

Related literature

The most relevant known analog of the title compound is hexa­kis(μ4-sulfido)-dioxohexa­kis(triphenyl­phosphine) -hexa­copper(I)divanadium(V) (Zheng et al., 2001[Zheng, F. K., Guo, G. C., Zhou, G. W., Zhang, X. & Huang, J. S. (2001). Chin. J. Struct. Chem. 20, 489-493.]), For related literature, see: Du et al. (1992[Du, S. W., Zhu, N. Y., Chen, P. C. & Wu, X. T. (1992). Angew. Chem. Int. Ed. Engl. 31, 1085-1089.]); Holm (1992[Holm, R. H. (1992). Adv. Inorg. Chem. 38, 1-10.]); Hou et al. (1996[Hou, H. W., Xin, X. Q. & Shi, S. (1996). Coord. Chem. Rev. 153, 25-56.]); Liu et al. (1995[Liu, Q. T., Yang, Y., Huang, L. R., Wu, D. X., Kang, B. S., Chen, C. N., Deng, Y. H. & Lu, J. X. (1995). Inorg. Chem. 34, 1884-1893.]); Naruta et al. (1994[Naruta, Y., Sasayama, M. & Sasaki, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 1839-1843.]); Zhang et al. (1996[Zhang, H. H., Yu, X. F., Yang, R. S., Zheng, F. K., Huang, L. Y. & Zhou, R. P. (1996). Chin. J. Struct. Chem. 15, 353-357.], 2001[Zhang, C., Jin, G., Chen, J., Xin, X. & Qian, K. (2001). Coord. Chem. Rev. 213, 51-72.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu6V2O2S6(C6H8N2)6]

  • Mr = 1356.34

  • Hexagonal, [R \overline 3]

  • a = 14.139 (2) Å

  • c = 20.830 (4) Å

  • V = 3606.2 (10) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 293 (2) K

  • 0.3 × 0.2 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.465, Tmax = 0.611

  • 6168 measured reflections

  • 1837 independent reflections

  • 1092 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.128

  • S = 1.02

  • 1837 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wiscon­sin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wiscon­sin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In the past two decades, considerable attention has been directed to the study of tetrathiometalate anions [MXS3]n- (X=O, S; M=V, Mo, W, Re) cluster compounds, since these complexes play a special role in catalysis reactions (Du et al., 1992), biological processes (Holm et al., 1992) and advanced materials (Naruta et al., 1994). These moieties can react as multidentate ligands with a wide variety of metal ions, such as Cu, Ag, Au, Zn, Cd, Hg, Fe, Co, Ni, Pd, Pt, Sn, and Ru to form a wide range of novel structures (Hou et al., 1996). More than 300 heterothiometallic cluster compounds containing these moieties have been synthesized and extensively studied (Zhang et al.,, 2001). However, crystal structures of these clusters containing 2-amino-4-methylpyridine ligands have not been reported until now.

In order to explore the chemistry of Mo(W)/S/Cu(Ag) clusters extensively, we have synthesized such a cluster by reaction in solution at normal temperatures. The solid-state molecular structure of the octanuclear neutral cluster 1 is shown in Fig. 1. It contains a cluster core [V2Cu6S6O2], of which the V2Cu6 atoms form a distorted cube, shown in Fig. 2. Each µ4-S atom is bonded to three Cu atoms and one V atom constructing each face of the dodecahedron. The geometry around the V atoms is slightly distorted tetrahedral with S–V–S 109.97 (5)° and S–V–O 108.97 (5)°, and the V–S bonds, 2.2382 (15) Å, are somewhat longer than those of the free [VS4]3- anion as expected [2.17 Å in the ammonium salt]. The coordination geometry of every Cu atom, bonded to three µ4-S atoms and one terminal ligand 2-amino-4-methylpyridine, is strongly distorted from an ideal tetrahedron with S—Cu—N angles varying from 104.52 (13)° to 121.11 (14)°. This phenomenon may arise from the steric effect of the bulky 2-amino-4-methylpyridine ligands. The Cu—N distance of 2.033 (4) Å is somewhat longer than the Cu—N distance found in [V2S4O3(CuPPh3)4(CuMeCN)2] complexes (Zhang et al.,, 1996). The Cu—S distances between 2.2886 (15) Å and 2.4701 (16) Å are comparable to those reported in (Et4N)3[(VS4Cu4(Et2dtc)(PhS)3] (Et2dtc=diethyldithiocarbamate) complexes (mean Cu—S = 2.236 (5) Å)(Liu et al., 1995).

In the preparation of the title compound, one S atom of the [VS4]3- unit is replaced by an O atom and [VS4]3- becomes [VS3O]3-. The V—O distance 1.618 (6) Å is a typical double bond distance. The adjacent metal-metal distances range from 2.6932 (11) Å to 2.7725 (10) Å, and are slightly shorter than normal V—Cu and Cu—Cu distances, indicating that there are weak metal-metal interactions. The terminal 2-amino-4-methylpyridine ligand is present in the usual monodentate mode. The C1—N1, C5—N1 and C1—N2 distances of 1.344 (6) Å, 1.344 (7) Å and 1.350 (7) Å, respectively, are typical Csp2—Nsp2 values.

Related literature top

The most relevant known analog of the title compound is hexakis(µ4-sulfido)-dioxohexakis(triphenylphosphine) -hexacopper(I)divanadium(V) (Zheng et al., 2001), For related literature, see: Du et al. (1992); Holm (1992); Hou et al. (1996); Liu et al. (1995); Naruta et al. (1994); Zhang et al. (1996, 2001).

Experimental top

To a solution of 2-amino-4-methylpyridine (0.0230 g, 0.1 mmol) in dimethylformamide (DMF) (10 ml) were added a solution of CuI (0.0741 g, 0.2 mmol) and (NH4)3VS4 suspended in DMF (5 ml). The reaction mixture was stirred at room temperature for about 8 h. The deep brown solution was filtered and slow diffution of i-PrOH/MeCN to the solution, resulted in black prismatic crystals suitable for X-ray analysis.

Refinement top

The amino hydrogen atoms were found from Fourier difference maps and fixed with N—H bond lengths of 0.90 Å. The H atoms of the aromatic group were geometrically idealized. All the H atoms were refined isotropically with isotropic vibration parameters related to the atoms to which they are bonded with Uĩso~ = 1.2 U~eq~ (Uĩso~ = 1.5U~eq~ for methyl H atoms).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.
[Figure 2] Fig. 2. Cubic arrangement of metal atoms.
Hexakis(2-amino-4-methylpyridine-κN1)dioxidohexa-µ4-sulfido-hexacopper(I)divanadium(V) top
Crystal data top
[Cu6V2O2S6(C6H8N2)6]Dx = 1.874 Mg m3
Mr = 1356.34Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 6634 reflections
Hall symbol: -R 3θ = 1.9–27.5°
a = 14.139 (2) ŵ = 3.28 mm1
c = 20.830 (4) ÅT = 293 K
V = 3606.2 (10) Å3Block, black
Z = 30.3 × 0.2 × 0.15 mm
F(000) = 2040
Data collection top
Bruker APEXII CCD
diffractometer
1837 independent reflections
Radiation source: fine-focus sealed tube1092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1718
Tmin = 0.465, Tmax = 0.611k = 1218
6168 measured reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
1837 reflections(Δ/σ)max = 0.001
97 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cu6V2O2S6(C6H8N2)6]Z = 3
Mr = 1356.34Mo Kα radiation
Hexagonal, R3µ = 3.28 mm1
a = 14.139 (2) ÅT = 293 K
c = 20.830 (4) Å0.3 × 0.2 × 0.15 mm
V = 3606.2 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1837 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1092 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.611Rint = 0.054
6168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
1837 reflectionsΔρmin = 0.69 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.15031 (5)0.98780 (5)0.96002 (3)0.0233 (3)
V10.00001.00000.88657 (7)0.0207 (4)
S10.14481 (11)0.99064 (11)1.07850 (6)0.0200 (4)
N10.2966 (4)1.0004 (4)0.9392 (2)0.0247 (12)
N20.2279 (4)0.8233 (4)0.9034 (2)0.0412 (14)
H2A0.16310.81070.91200.049*
H2B0.23730.77230.88780.049*
C20.4198 (5)0.9427 (5)0.9031 (3)0.0269 (14)
H2C0.42950.88700.88650.032*
O10.00001.00000.8089 (3)0.0252 (16)
C10.3149 (5)0.9230 (5)0.9147 (2)0.0227 (13)
C40.4909 (5)1.1207 (5)0.9417 (3)0.0309 (15)
H4A0.54921.18930.95180.037*
C50.3854 (5)1.0969 (5)0.9528 (3)0.0296 (15)
H5A0.37491.15110.97100.036*
C30.5092 (5)1.0422 (5)0.9155 (3)0.0255 (14)
C60.6221 (5)1.0633 (6)0.9020 (3)0.0424 (18)
H6A0.67441.13710.91340.064*
H6B0.62891.05220.85710.064*
H6C0.63561.01390.92670.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0191 (4)0.0213 (4)0.0307 (4)0.0111 (4)0.0002 (3)0.0007 (3)
V10.0197 (6)0.0197 (6)0.0226 (9)0.0098 (3)0.0000.000
S10.0180 (8)0.0194 (8)0.0234 (7)0.0099 (7)0.0012 (6)0.0018 (6)
N10.027 (3)0.030 (3)0.020 (2)0.016 (3)0.002 (2)0.003 (2)
N20.026 (3)0.030 (3)0.063 (4)0.011 (3)0.012 (3)0.007 (3)
C20.025 (4)0.034 (4)0.030 (3)0.022 (3)0.006 (3)0.002 (3)
O10.030 (2)0.030 (2)0.016 (3)0.0150 (12)0.0000.000
C10.024 (4)0.023 (3)0.021 (3)0.012 (3)0.002 (3)0.003 (3)
C40.022 (4)0.029 (4)0.039 (4)0.010 (3)0.003 (3)0.003 (3)
C50.031 (4)0.021 (4)0.037 (4)0.013 (3)0.004 (3)0.004 (3)
C30.024 (4)0.037 (4)0.022 (3)0.020 (3)0.001 (3)0.003 (3)
C60.029 (4)0.066 (5)0.040 (4)0.030 (4)0.006 (3)0.006 (4)
Geometric parameters (Å, º) top
Cu1—N12.033 (4)N1—C51.344 (7)
Cu1—S1i2.2886 (15)N1—C11.344 (6)
Cu1—S1ii2.3353 (15)N2—C11.350 (7)
Cu1—S12.4701 (16)N2—H2A0.8600
Cu1—V12.6932 (11)N2—H2B0.8600
Cu1—Cu1ii2.7725 (10)C2—C31.366 (8)
Cu1—Cu1i2.7725 (10)C2—C11.387 (7)
V1—O11.618 (6)C2—H2C0.9300
V1—S1ii2.2382 (15)C4—C31.373 (8)
V1—S1iii2.2382 (15)C4—C51.374 (7)
V1—S1i2.2382 (15)C4—H4A0.9300
V1—Cu1iv2.6932 (11)C5—H5A0.9300
V1—Cu1v2.6932 (11)C3—C61.498 (7)
S1—V1iii2.2382 (15)C6—H6A0.9600
S1—Cu1ii2.2886 (15)C6—H6B0.9600
S1—Cu1i2.3353 (15)C6—H6C0.9600
N1—Cu1—S1i121.11 (14)S1iii—V1—Cu1126.41 (7)
N1—Cu1—S1ii107.71 (14)S1i—V1—Cu154.36 (4)
S1i—Cu1—S1ii104.91 (7)Cu1iv—V1—Cu190.91 (4)
N1—Cu1—S1104.52 (13)Cu1v—V1—Cu190.91 (4)
S1i—Cu1—S1109.83 (6)V1iii—S1—Cu1ii73.01 (5)
S1ii—Cu1—S1108.29 (5)V1iii—S1—Cu1i72.12 (5)
N1—Cu1—V1132.40 (12)Cu1ii—S1—Cu1i112.24 (6)
S1i—Cu1—V152.63 (4)V1iii—S1—Cu1111.28 (7)
S1ii—Cu1—V152.27 (4)Cu1ii—S1—Cu171.15 (4)
S1—Cu1—V1122.30 (5)Cu1i—S1—Cu170.41 (4)
N1—Cu1—Cu1ii114.62 (14)C5—N1—C1116.4 (5)
S1i—Cu1—Cu1ii124.25 (4)C5—N1—Cu1115.9 (4)
S1ii—Cu1—Cu1ii57.07 (4)C1—N1—Cu1127.6 (4)
S1—Cu1—Cu1ii51.37 (4)C1—N2—H2A120.0
V1—Cu1—Cu1ii90.71 (3)C1—N2—H2B120.0
N1—Cu1—Cu1i127.78 (13)H2A—N2—H2B120.0
S1i—Cu1—Cu1i57.48 (4)C3—C2—C1121.3 (5)
S1ii—Cu1—Cu1i123.48 (4)C3—C2—H2C119.4
S1—Cu1—Cu1i52.52 (4)C1—C2—H2C119.4
V1—Cu1—Cu1i90.71 (3)N1—C1—N2118.1 (5)
Cu1ii—Cu1—Cu1i87.63 (4)N1—C1—C2121.6 (5)
O1—V1—S1ii108.97 (5)N2—C1—C2120.2 (5)
O1—V1—S1iii108.97 (5)C3—C4—C5119.3 (5)
S1ii—V1—S1iii109.97 (5)C3—C4—H4A120.3
O1—V1—S1i108.97 (5)C5—C4—H4A120.3
S1ii—V1—S1i109.97 (5)N1—C5—C4124.1 (5)
S1iii—V1—S1i109.97 (5)N1—C5—H5A117.9
O1—V1—Cu1iv124.62 (3)C4—C5—H5A117.9
S1ii—V1—Cu1iv54.36 (4)C2—C3—C4117.2 (5)
S1iii—V1—Cu1iv55.61 (4)C2—C3—C6121.0 (5)
S1i—V1—Cu1iv126.41 (7)C4—C3—C6121.8 (6)
O1—V1—Cu1v124.62 (3)C3—C6—H6A109.5
S1ii—V1—Cu1v126.41 (7)C3—C6—H6B109.5
S1iii—V1—Cu1v54.36 (4)H6A—C6—H6B109.5
S1i—V1—Cu1v55.61 (4)C3—C6—H6C109.5
Cu1iv—V1—Cu1v90.91 (4)H6A—C6—H6C109.5
O1—V1—Cu1124.62 (3)H6B—C6—H6C109.5
S1ii—V1—Cu155.61 (4)
Symmetry codes: (i) y1, x+y, z+2; (ii) xy+1, x+1, z+2; (iii) x, y+2, z+2; (iv) y+1, xy+2, z; (v) x+y1, x+1, z.

Experimental details

Crystal data
Chemical formula[Cu6V2O2S6(C6H8N2)6]
Mr1356.34
Crystal system, space groupHexagonal, R3
Temperature (K)293
a, c (Å)14.139 (2), 20.830 (4)
V3)3606.2 (10)
Z3
Radiation typeMo Kα
µ (mm1)3.28
Crystal size (mm)0.3 × 0.2 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.465, 0.611
No. of measured, independent and
observed [I > 2σ(I)] reflections
6168, 1837, 1092
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.128, 1.02
No. of reflections1837
No. of parameters97
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.69

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

 

Acknowledgements

This project was supported by the Natural Science Foundation of Jiangsu Educational Office

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wiscon­sin, USA.  Google Scholar
First citationDu, S. W., Zhu, N. Y., Chen, P. C. & Wu, X. T. (1992). Angew. Chem. Int. Ed. Engl. 31, 1085–1089.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHolm, R. H. (1992). Adv. Inorg. Chem. 38, 1–10.  CrossRef CAS Google Scholar
First citationHou, H. W., Xin, X. Q. & Shi, S. (1996). Coord. Chem. Rev. 153, 25–56.  CrossRef CAS Web of Science Google Scholar
First citationLiu, Q. T., Yang, Y., Huang, L. R., Wu, D. X., Kang, B. S., Chen, C. N., Deng, Y. H. & Lu, J. X. (1995). Inorg. Chem. 34, 1884–1893.  CSD CrossRef CAS Web of Science Google Scholar
First citationNaruta, Y., Sasayama, M. & Sasaki, T. (1994). Angew. Chem. Int. Ed. Engl. 33, 1839–1843.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C., Jin, G., Chen, J., Xin, X. & Qian, K. (2001). Coord. Chem. Rev. 213, 51–72.  Web of Science CrossRef CAS Google Scholar
First citationZhang, H. H., Yu, X. F., Yang, R. S., Zheng, F. K., Huang, L. Y. & Zhou, R. P. (1996). Chin. J. Struct. Chem. 15, 353-357.  CAS Google Scholar
First citationZheng, F. K., Guo, G. C., Zhou, G. W., Zhang, X. & Huang, J. S. (2001). Chin. J. Struct. Chem. 20, 489–493.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds